[1]
|
E. Bombieri, On exponential sums in finite fields, Am. J. Math., 88 (1966), 71-105.
doi: 10.2307/2373048.
|
[2]
|
A. R. Calderbank, P. J. Cameron and W. M. Kantor et al., ${\mathbb{Z}_4}$-kerdock codes, orthogonal spreads, and extremal Euclidean line-sets, Proc. London Math. Soc., 75 (1997), 436-480.
doi: 10.1112/S0024611597000403.
|
[3]
|
D. Chu, Polyphase codes with good periodic correlation properties, IEEE Trans. Inform. Theory, 18 (1972), 531-532.
doi: 10.1109/TIT.1972.1054840.
|
[4]
|
J. H. Conway, R. H. Harding and N. J. A. Sloane, Packing lines, planes, etc.: Packings in Grassmannian spaces, Exp. Math., 5 (1996), 139-159.
|
[5]
|
P. Delsarte, J. M. Goethals and J. J. Seidel, Spherical codes and designs, Geometriae Dedicate, 6 (1977), 363-388.
doi: 10.1007/bf03187604.
|
[6]
|
C. Ding, Complex codebooks from combinatorial designs, IEEE Trans. Inform. Theory, 52 (2006), 4229-4235.
doi: 10.1109/TIT.2006.880058.
|
[7]
|
C. Ding and T. Feng, A generic construction of complex codebooks meeting the Welch bound, IEEE Trans. Inform. Theory, 53 (2007), 4245-4250.
doi: 10.1109/TIT.2007.907343.
|
[8]
|
C. Ding and J. Yin, Singal sets from functions with optimal nonlinearity, IEEE Trans. Commun., 55 (2007), 936-940.
doi: 10.1109/TCOMM.2007.894113.
|
[9]
|
M. Fickus, D. G. Mixon and J. Jasper, Equiangular tight frames from hyperovals, IEEE Trans. Inform. Theory, 62 (2016), 5225-5236.
doi: 10.1109/TIT.2016.2587865.
|
[10]
|
M. Fickus, D. G. Mixon and J. C. Tremain, Steiner equiangular tight frames, Linear Algebra Appl., 436 (2012), 1014-1027.
doi: 10.1016/j.laa.2011.06.027.
|
[11]
|
S. W. Golomb and G. Gong, Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar, Cambridge Univ., Press, Cambridge, U.K., 2005.
doi: 10.1017/CBO9780511546907.
|
[12]
|
Z. Heng, C. Ding and Q. Yue, New constructions of asymptotically optimal codebooks with multiplicative characters, IEEE Trans. Inform. Theory, 63 (2017), 6179-6187.
doi: 10.1109/TIT.2017.2693204.
|
[13]
|
Z. Heng and Q. Yue, Optimal codebooks achieving the Levenshtein bound from generalized bent functions over ${\mathbb{Z}_4}$, Cryptogr. Commun., 9 (2017), 41-53.
doi: 10.1007/s12095-016-0194-5.
|
[14]
|
S. Hong, H. Park, J.-S. No and T. Helleseth, et al., Near optimal partial Hadamard codebook construction using binary sequences obtained from quadratic residue mapping, IEEE Trans. Inform. Theory, 60 (2014), 3698-3705.
doi: 10.1109/TIT.2014.2314298.
|
[15]
|
H. Hu and J. Wu, New constructions of codebooks nearly meeting the Welch bound with equality, IEEE Trans. Inform. Theory, 60 (2014), 1348-1355.
doi: 10.1109/TIT.2013.2292745.
|
[16]
|
N. M. Katz, An estimate for character sums, J. Am. Math. Soc., 2 (1989), 197-200.
doi: 10.1090/S0894-0347-1989-0965007-8.
|
[17]
|
V. I. Levenshtein, Bounds for packing of metric spaces and some of their applications, Probl. Kibern., 40 (1983), 43-110.
|
[18]
|
C. Li, Q. Yue and Y. Huang, Two families of nearly optimal codebooks, Des. Codes Cryptogr., 75 (2015), 43-57.
doi: 10.1007/s10623-013-9891-7.
|
[19]
|
S. Li and G. Ge, Deterministic sensing matrices arising from near orthogonal systems, IEEE Trans. Inform. Theory, 60 (2014), 2291-2302.
doi: 10.1109/TIT.2014.2303973.
|
[20]
|
D. J. Love, R. W. Heath and T. Strohmer, Grassmannian beamforming for multiple input multiple output wireless systems, IEEE Trans. Inform. Theory, 49 (2003), 2735-2747.
doi: 10.1109/TIT.2003.817466.
|
[21]
|
W. Lu, X. Wu and X. Cao, et al., Six constructions of asymptotically optimal codebooks via the character sums, Des. Codes Cryptogr., 88 (2020), 1139-1158.
doi: 10.1007/s10623-020-00735-w.
|
[22]
|
G. Luo and X. Cao, Two constructions of asymptotically optimal codebooks via the hyper Eisenstein sum, IEEE Trans. Inform. Theory, 64 (2017), 6498-6505.
doi: 10.1109/TIT.2017.2777492.
|
[23]
|
G. Luo and X. Cao, Two constructions of asymptotically optimal codebooks, Cryptogr. Commun., 11 (2019), 825-838.
doi: 10.1007/s12095-018-0331-4.
|
[24]
|
G. Luo and X. Cao, New constructions of codebooks asymptotically achieving the Welch bound, in "IEEE Int. Symp. Inf. Theory", Vail, CO, USA, (2018), 2346–2350.
doi: 10.1109/ISIT.2018.8437838.
|
[25]
|
J. L. Massey and T. Mittelholzer, Welch$^{\prime}$s bound and sequence sets for code division multiple access systems, in "Sequences II: Methods in Communication, Security and Computer Science", Springer, New York, (1993), 63–78.
|
[26]
|
L. Qian and X. Cao, Gaussian Sums, Hyper Eisenstein Sums and Jacobi Sums over a Local Ring and their Applications, Applicable Algebra in Engineering, Communication and Computing, 2021.
doi: 10.1007/s00200-021-00491-x.
|
[27]
|
D. V. Sarwate, Meeting the Welch bound with equality, in "Proc. SETA$^{\prime}$98", Springer, London, (1999), 79–102.
|
[28]
|
T. Strohmer and R. W. Heath, Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal., 14 (2003), 257-275.
doi: 10.1016/S1063-5203(03)00023-X.
|
[29]
|
P. Tan, Z. Zhou and D. Zhang, A construction of codebooks nearly achieving the Levenstein bound, IEEE Signal Process. Lett., 23 (2016), 1306-1309.
doi: 10.1109/LSP.2016.2595106.
|
[30]
|
V. Tarokh and I. M. Kim, Existence and construction of noncoherent unitary space-time codes, IEEE Trans. Inform. Theory, 48 (2002), 3112-3117.
doi: 10.1109/TIT.2002.805075.
|
[31]
|
L. Tian, Y. Li and T. Liu, et al., Constructions of codebooks asymptotically achieving the Welch bound with additive characters, IEEE Signal Pro. Let., 26 (2019), 622-626.
doi: 10.1109/LSP.2019.2891896.
|
[32]
|
Q. Wang and Y. Yan, Asymptotically optimal codebooks derived from generalised bent functions, IEEE Access, 8 (2020), 54905-54909.
doi: 10.1109/ACCESS.2020.2980330.
|
[33]
|
X. Wang, J. Zhang and G. Ge, Deterministic convolutional compressed sensing matrices, Finite Fields App., 42 (2016), 102-117.
doi: 10.1016/j.ffa.2016.07.002.
|
[34]
|
L. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Trans. Inform. Theory, 20 (1974), 397-399.
doi: 10.1109/TIT.1974.1055219.
|
[35]
|
W. K. Wooters and B. D. Fields, Optimal state-determination by mutually unbiased measurements, Ann. Phys., 191 (1989), 363-381.
doi: 10.1016/0003-4916(89)90322-9.
|
[36]
|
P. Xia, S. Zhou and G. B. Giannakis, Achieving the Welch bound with difference sets, IEEE Trans. Inform. Theory, 51 (2005), 1900-1907.
doi: 10.1109/TIT.2005.846411.
|
[37]
|
C. Xiang, C. Ding and S. Mesnager, Optimal codebooks from binary codebooks meeting the Levenshtein bound, IEEE Trans. Inform. Theory, 61 (2015), 6526-6535.
doi: 10.1109/TIT.2015.2487451.
|
[38]
|
G. Xu and Z. Xu, Compressed sensing matrices from Fourier matrices, IEEE Trans. Inform. Theory, 61 (2015), 469-478.
doi: 10.1109/TIT.2014.2375259.
|
[39]
|
N. Y. Yu, A construction of codebooks associated with binary sequences, IEEE Trans. Inform. Theory, 58 (2012), 5522-5533.
doi: 10.1109/TIT.2012.2196021.
|
[40]
|
A. Zhang and K. Feng, Two classes of codebooks nearly meeting the Welch bound, IEEE Trans. Inform. Theory, 58 (2012), 2507-2511.
doi: 10.1109/TIT.2011.2176531.
|
[41]
|
Z. Zhou, C. Ding and N. Li, New families of codebooks achieving the Levenshtein bound, IEEE Trans. Inform. Theory, 60 (2014), 7382-7387.
doi: 10.1109/TIT.2014.2353052.
|
[42]
|
Z. Zhou and X. Tang, New nearly optimal codebooks from relative difference sets, Adv. Math. Commun., 5 (2011), 521-527.
doi: 10.3934/amc.2011.5.521.
|