\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Classification of $ \mathbf{(3 \!\mod 5)} $ arcs in $ \mathbf{ \operatorname{PG}(3,5)} $

Abstract / Introduction Full Text(HTML) Figure(0) / Table(15) Related Papers Cited by
  • The proof of the non-existence of Griesmer $ [104, 4, 82]_5 $-codes is just one of many examples where extendability results are used. In a series of papers Landjev and Rousseva have introduced the concept of $ (t\mod q) $-arcs as a general framework for extendability results for codes and arcs. Here we complete the known partial classification of $ (3 \mod 5) $-arcs in $ \operatorname{PG}(3,5) $ and uncover two missing, rather exceptional, examples disproving a conjecture of Landjev and Rousseva. As also the original non-existence proof of Griesmer $ [104, 4, 82]_5 $-codes is affected, we present an extended proof to fill this gap.

    Mathematics Subject Classification: Primary: 51E22; Secondary: 51E21, 94B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Number of isomorphism types of strong $ (3\mod 5) $-arcs in $ \operatorname{PG}(2,5) $ and their corresponding minihypers

    $ \# \mathcal{K} $ $ m $ $ \# \mathcal{B} $ line mult. weights # isomorphism types
    18 3 3 $ 0,1,2,3 $ $ 0,1,2,3 $ 4
    23 4 9 $ 1,2,3,4 $ $ 5,6,7,8 $ 1
    28 5 15 $ 2,3,4,5 $ $ 10,11,12,13 $ 1
    33 6 21 $ 3,4,5,6 $ $ 15,16,17,18 $ 10
    38 7 27 $ 4,5,6,7 $ $ 20,21,22,23 $ 23
    43 8 33 $ 5,6,7,8 $ $ 25,26,27,28 $ 53
    48 9 39 $ 6,7,8,9 $ $ 30,31,32,33 $ 49
    53 10 45 $ 7,8,9,10 $ $ 35,36,37,38 $ 17
    58 11 51 $ 8,9,10,11 $ $ 40,41,42,43 $ 11
    63 12 57 $ 9,10,11,12 $ $ 45,46,47,48 $ 9
    68 13 63 $ 10,11,12,13 $ $ 50,51,52,53 $ 6
    73 14 69 $ 11,12,13,14 $ $ 55,56,57,58 $ 0
    78 15 75 $ 12,13,14,15 $ $ 60,61,62,63 $ 0
    83 16 81 $ 13,14,15,16 $ $ 65,66,67,68 $ 0
    88 17 87 $ 14,15,16,17 $ $ 70,71,72,73 $ 0
    93 18 93 $ 15,16,17,18 $ $ 75,76,77,78 $ 1
     | Show Table
    DownLoad: CSV

    Table 2.  Different line types of strong $ (3\mod 5) $-arcs in $ \operatorname{PG}(2,5) $

    $ \mathcal{K}(L) $ type of $ L $ name
    3 $ (3,0,0,0,0,0) $ $ A_1 $
    $ (2,1,0,0,0,0) $ $ A_2 $
    $ (1,1,1,0,0,0) $ $ A_3 $
    8 $ (3,3,2,0,0,0) $ $ B_1 $
    $ (3,3,1,1,0,0) $ $ B_2 $
    $ (3,2,2,1,0,0) $ $ B_3 $
    $ (3,2,1,1,1,0) $ $ B_4 $
    $ (3,1,1,1,1,1) $ $ B_5 $
    $ (2,2,2,2,0,0) $ $ B_6 $
    $ (2,2,2,1,1,0) $ $ B_7 $
    $ (2,2,1,1,1,1) $ $ B_8 $
    13 $ (3,3,3,3,1,0) $ $ C_1 $
    $ (3,3,3,2,2,0) $ $ C_2 $
    $ (3,3,3,2,1,1) $ $ C_3 $
    $ (3,3,2,2,2,1) $ $ C_4 $
    $ (3,2,2,2,2,2) $ $ C_5 $
    18 $ (3,3,3,3,3,3) $ $ D_1 $
     | Show Table
    DownLoad: CSV

    Table 3.  Details for the computations for $ 178\le \# \mathcal{K}\le 273 $

    $ n $ 178 183 188 193 198 203 208 213 218 223
    $ \#\mathcal{E}_n $ 31 36 46 75 180 174 176 179 177 179
    time in h 3078 351 998 972 1434 1787 2368 2661 3214 3110
    $ n $ 228 233 238 243 248 253 258 263 268 273
    $ \#\mathcal{E}_n $ 176 180 177 170 176 170 161 173 148 111
    time in h 3477 3448 3396 3150 2848 2042 1752 855 911 683
     | Show Table
    DownLoad: CSV

    Table 4.  Strong $(3\mod 5)$-arcs in ${\rm{PG}}(2, 5)$ of cardinality $18$

    $A_1$ $A_2$ $A_3$ $B_1$ $B_2$ $B_3$ $B_4$ $B_5$ $B_6$ $B_7$ $B_8$ $C_1$ $C_2$ $C_3$ $C_4$ $C_5$ $D_1$ $\lambda_0$ $\lambda_1$ $\lambda_2$ $\lambda_3$ $\#$
    0 12 16 0 0 0 0 0 0 0 3 0 0 0 0 0 0 16 12 3 0 1
    3 0 25 0 0 0 0 3 0 0 0 0 0 0 0 0 0 15 15 0 1 1
    4 25 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 20 5 5 1 1
    30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 25 0 0 6 1
     | Show Table
    DownLoad: CSV

    Table 5.  Strong $(3\mod 5)$-arcs in ${\rm{PG}}(2, 5)$ of cardinality $23$

    $A_1$ $A_2$ $A_3$ $B_1$ $B_2$ $B_3$ $B_4$ $B_5$ $B_6$ $B_7$ $B_8$ $C_1$ $C_2$ $C_3$ $C_4$ $C_5$ $D_1$ $\lambda_0$ $\lambda_1$ $\lambda_2$ $\lambda_3$ $\#$
    6 12 4 0 3 6 0 0 0 0 0 0 0 0 0 0 0 18 6 4 3 1
     | Show Table
    DownLoad: CSV

    Table 6.  Strong $(3\mod 5)$-arcs in ${\rm{PG}}(2, 5)$ of cardinality $28$

    $A_1$ $A_2$ $A_3$ $B_1$ $B_2$ $B_3$ $B_4$ $B_5$ $B_6$ $B_7$ $B_8$ $C_1$ $C_2$ $C_3$ $C_4$ $C_5$ $D_1$ $\lambda_0$ $\lambda_1$ $\lambda_2$ $\lambda_3$ $\#$
    6 0 10 0 15 0 0 0 0 0 0 0 0 0 0 0 0 15 10 0 6 1
     | Show Table
    DownLoad: CSV

    Table 7.  Strong $(3\mod 5)$-arcs in ${\rm{PG}}(2, 5)$ of cardinality $33$

    $A_1$ $A_2$ $A_3$ $B_1$ $B_2$ $B_3$ $B_4$ $B_5$ $B_6$ $B_7$ $B_8$ $C_1$ $C_2$ $C_3$ $C_4$ $C_5$ $D_1$ $\lambda_0$ $\lambda_1$ $\lambda_2$ $\lambda_3$ $\#$
    0 0 10 0 15 0 0 6 0 0 0 0 0 0 0 0 0 10 15 0 6 1
    0 3 7 2 8 2 7 1 0 0 1 0 0 0 0 0 0 11 12 3 5 1
    0 6 4 0 6 12 0 0 0 0 3 0 0 0 0 0 0 12 9 6 4 1
    0 6 4 2 4 8 4 0 0 2 1 0 0 0 0 0 0 12 9 6 4 2
    0 6 4 3 3 6 6 0 0 3 0 0 0 0 0 0 0 12 9 6 4 1
    0 9 1 3 0 9 3 0 3 3 0 0 0 0 0 0 0 13 6 9 3 1
    2 8 1 8 6 4 0 0 0 1 0 0 0 0 1 0 0 15 5 5 6 1
    4 5 2 5 4 10 0 0 0 0 0 1 0 0 0 0 0 15 5 5 6 1
    8 4 0 16 0 0 0 0 1 0 0 2 0 0 0 0 0 18 1 4 8 1
     | Show Table
    DownLoad: CSV

    Table 8.  Strong $(3\mod 5)$-arcs in ${\rm{PG}}(2, 5)$ of cardinality $38$

    $A_1$ $A_2$ $A_3$ $B_1$ $B_2$ $B_3$ $B_4$ $B_5$ $B_6$ $B_7$ $B_8$ $C_1$ $C_2$ $C_3$ $C_4$ $C_5$ $D_1$ $\lambda_0$ $\lambda_1$ $\lambda_2$ $\lambda_3$ $\#$
    0 0 4 0 0 0 0 0 3 18 6 0 0 0 0 0 0 6 12 13 0 1
    0 0 5 0 0 6 12 2 0 2 3 1 0 0 0 0 0 7 14 6 4 1
    0 1 4 0 0 10 4 1 0 8 2 0 0 1 0 0 0 8 11 9 3 1
    0 1 4 0 0 9 6 0 1 6 3 0 0 1 0 0 0 8 11 9 3 1
    0 2 3 0 0 6 9 0 1 7 2 0 1 0 0 0 0 8 11 9 3 1
    0 2 4 0 12 0 8 3 0 0 0 1 1 0 0 0 0 9 13 2 7 1
    0 2 4 4 5 4 8 0 0 2 0 0 0 2 0 0 0 10 10 5 6 2
    0 3 2 0 0 8 2 0 4 10 1 0 0 0 1 0 0 9 8 12 2 1
    0 3 3 2 6 6 8 0 0 0 1 1 0 0 1 0 0 10 10 5 6 1
    0 4 2 4 2 10 3 0 1 3 0 0 0 1 1 0 0 11 7 8 5 1
    0 5 0 0 0 5 0 0 10 10 0 0 0 0 0 1 0 10 5 15 1 1
    0 5 1 2 4 12 0 1 0 4 0 0 1 0 1 0 0 11 7 8 5 1
    0 5 1 3 3 9 4 0 1 3 0 0 1 0 1 0 0 11 7 8 5 1
    0 6 0 4 0 12 0 0 6 0 1 0 0 0 2 0 0 12 4 11 4 1
    1 1 4 2 4 7 9 0 0 1 0 1 0 1 0 0 0 10 10 5 6 1
    1 2 3 3 1 13 2 0 1 3 0 0 0 2 0 0 0 11 7 8 5 1
    1 3 2 2 1 13 4 0 1 2 0 1 0 0 1 0 0 11 7 8 5 1
    1 4 1 0 4 14 0 1 0 4 0 0 2 0 0 0 0 11 7 8 5 1
    1 4 1 1 3 11 4 0 1 3 0 0 2 0 0 0 0 11 7 8 5 1
    2 5 0 10 2 7 0 0 2 0 0 0 2 1 0 0 0 14 3 7 7 2
    3 0 4 3 15 0 3 0 0 0 0 3 0 0 0 0 0 12 9 1 9 1
     | Show Table
    DownLoad: CSV

    Table 9.  Strong $(3\mod 5)$-arcs in ${\rm{PG}}(2, 5)$ of cardinality $43$

    $A_1$ $A_2$ $A_3$ $B_1$ $B_2$ $B_3$ $B_4$ $B_5$ $B_6$ $B_7$ $B_8$ $C_1$ $C_2$ $C_3$ $C_4$ $C_5$ $D_1$ $\lambda_0$ $\lambda_1$ $\lambda_2$ $\lambda_3$ $\#$
    0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 1 0 25 0 6 1
    0 0 0 0 0 0 0 4 0 0 25 0 0 0 0 2 0 0 20 10 1 1
    0 0 1 0 0 0 9 3 0 6 9 0 0 0 3 0 0 3 16 9 3 1
    0 0 2 0 2 7 8 1 0 4 3 0 0 2 2 0 0 6 12 8 5 2
    0 0 2 0 3 1 13 4 0 2 2 0 1 3 0 0 0 5 15 5 6 1
    0 0 3 2 8 5 6 1 0 0 1 1 0 4 0 0 0 8 11 4 8 1
    0 0 3 4 6 0 12 0 1 0 0 1 0 4 0 0 0 8 11 4 8 1
    0 1 0 0 0 0 8 0 0 12 7 0 0 0 1 2 0 4 13 12 2 1
    0 1 1 0 2 3 13 0 1 3 3 0 1 1 2 0 0 6 12 8 5 1
    0 1 1 0 2 4 11 1 0 5 2 0 1 1 2 0 0 6 12 8 5 2
    0 1 1 0 2 8 4 0 2 7 2 0 0 0 4 0 0 7 9 11 4 2
    0 1 2 1 9 4 7 1 0 0 1 1 1 3 0 0 0 8 11 4 8 1
    0 1 2 6 0 12 0 0 3 2 0 0 0 2 3 0 0 10 5 10 6 1
    0 2 0 0 0 12 0 0 4 8 1 0 0 1 0 3 0 8 6 14 3 1
    0 2 0 0 1 7 7 0 1 8 1 0 1 0 2 1 0 7 9 11 4 1
    0 2 0 0 1 8 5 1 0 10 0 0 1 0 2 1 0 7 9 11 4 1
    0 2 1 0 10 3 8 1 0 0 1 1 2 2 0 0 0 8 11 4 8 1
    0 2 1 1 8 2 11 1 0 0 0 2 1 1 1 0 0 8 11 4 8 1
    0 2 1 2 4 11 5 0 0 0 1 2 0 0 3 0 0 9 8 7 7 1
    0 2 1 2 5 10 4 0 0 1 1 1 1 1 2 0 0 9 8 7 7 1
    0 2 1 2 6 9 3 0 0 2 1 0 2 2 1 0 0 9 8 7 7 2
    0 2 1 3 4 8 6 0 0 2 0 1 1 1 2 0 0 9 8 7 7 1
    0 2 1 3 5 7 5 0 0 3 0 0 2 2 1 0 0 9 8 7 7 1
    0 3 0 0 7 11 3 0 0 0 2 1 2 0 2 0 0 9 8 7 7 1
    0 3 0 2 6 6 6 0 0 3 0 0 3 1 1 0 0 9 8 7 7 1
    0 3 0 4 1 12 2 0 2 2 0 0 2 1 1 1 0 10 5 10 6 1
    0 3 0 4 2 10 2 0 3 2 0 0 2 0 3 0 0 10 5 10 6 1
    0 3 1 12 3 6 0 0 0 0 0 3 0 0 3 0 0 12 4 6 9 1
    1 0 0 0 0 0 0 2 0 25 0 0 0 0 0 3 0 5 10 15 1 1
    1 0 0 0 0 0 25 3 0 0 0 0 0 0 0 1 1 5 15 5 6 1
    1 0 1 0 0 6 8 0 2 9 0 0 1 0 3 0 0 7 9 11 4 1
    1 0 2 0 7 5 10 1 0 0 0 2 1 2 0 0 0 8 11 4 8 1
    1 0 2 2 4 10 4 0 0 3 0 0 2 3 0 0 0 9 8 7 7 2
    1 1 1 1 4 10 6 0 0 2 0 1 2 1 1 0 0 9 8 7 7 2
    1 2 0 2 1 14 2 0 2 2 0 0 3 1 0 1 0 10 5 10 6 2
    1 2 0 2 2 12 2 0 3 2 0 0 3 0 2 0 0 10 5 10 6 1
    1 3 0 9 5 6 0 0 0 1 0 2 3 0 1 0 0 12 4 6 9 1
    2 0 0 0 0 0 0 0 25 0 0 0 0 0 0 4 0 10 0 20 1 1
    2 0 0 0 0 25 0 1 0 0 0 0 0 0 0 2 1 10 5 10 6 2
    2 0 0 0 25 0 0 2 0 0 0 0 0 0 0 0 2 10 10 0 11 2
    2 1 1 8 3 10 0 0 0 0 0 3 2 0 1 0 0 12 4 6 9 1
    2 2 0 7 5 8 0 0 0 1 0 2 4 0 0 0 0 12 4 6 9 1
    3 0 0 25 0 0 0 0 0 0 0 0 0 0 0 1 2 15 0 5 11 1
    3 0 0 6 6 12 0 0 0 0 0 0 3 0 0 0 1 12 4 6 9 1
     | Show Table
    DownLoad: CSV

    Table 10.  Strong $(3\mod 5)$-arcs in ${\rm{PG}}(2, 5)$ of cardinality $48$

    $A_1$ $A_2$ $A_3$ $B_1$ $B_2$ $B_3$ $B_4$ $B_5$ $B_6$ $B_7$ $B_8$ $C_1$ $C_2$ $C_3$ $C_4$ $C_5$ $D_1$ $\lambda_0$ $\lambda_1$ $\lambda_2$ $\lambda_3$ $\#$
    0 0 0 0 12 3 6 3 0 0 0 0 0 6 0 0 1 6 12 3 10 1
    0 0 0 0 2 11 0 0 2 6 2 0 0 1 5 2 0 6 7 13 5 1
    0 0 0 0 2 4 12 1 0 0 4 0 0 6 1 1 0 4 13 7 7 1
    0 0 0 0 2 8 6 0 0 4 3 0 0 3 4 1 0 5 10 10 6 1
    0 0 0 0 3 3 10 2 0 2 3 0 0 5 3 0 0 4 13 7 7 1
    0 0 0 0 3 6 6 0 1 4 3 0 0 2 6 0 0 5 10 10 6 1
    0 0 0 1 0 11 2 0 1 7 1 0 0 2 3 3 0 6 7 13 5 1
    0 0 0 1 2 1 12 2 0 3 2 0 0 5 3 0 0 4 13 7 7 1
    0 0 0 1 2 4 8 0 1 5 2 0 0 2 6 0 0 5 10 10 6 1
    0 0 0 1 2 5 6 1 0 7 1 0 0 2 6 0 0 5 10 10 6 1
    0 0 0 1 2 7 2 0 3 7 1 0 0 0 7 1 0 6 7 13 5 1
    0 0 0 2 0 4 10 0 0 6 1 0 0 3 4 1 0 5 10 10 6 1
    0 0 0 2 0 7 4 0 2 8 0 0 0 1 5 2 0 6 7 13 5 1
    0 0 0 2 0 8 0 0 7 6 0 0 0 0 4 4 0 7 4 16 4 1
    0 0 0 3 6 6 9 0 0 0 0 0 0 3 3 0 1 7 9 6 9 1
    0 0 0 4 2 14 4 0 0 0 0 0 0 1 4 1 1 8 6 9 8 1
    0 0 1 0 9 3 6 3 0 0 0 3 0 6 0 0 0 6 12 3 10 1
    0 0 1 1 8 7 2 0 0 1 2 0 3 6 0 0 0 7 9 6 9 1
    0 0 1 2 5 7 6 0 0 0 1 2 1 4 2 0 0 7 9 6 9 1
    0 0 1 3 4 5 8 0 0 1 0 2 1 4 2 0 0 7 9 6 9 1
    0 0 1 3 5 4 7 0 0 2 0 1 2 5 1 0 0 7 9 6 9 2
    0 0 1 3 6 3 6 0 0 3 0 0 3 6 0 0 0 7 9 6 9 2
    0 0 1 4 2 10 2 0 1 2 0 1 2 2 4 0 0 8 6 9 8 2
    0 0 1 4 3 9 1 0 1 3 0 0 3 3 3 0 0 8 6 9 8 2
    0 0 1 6 0 9 0 0 6 0 0 0 3 0 6 0 0 9 3 12 7 1
    0 0 2 6 12 0 0 0 0 0 1 6 0 4 0 0 0 9 8 2 12 1
    0 1 0 1 6 6 7 0 0 0 1 2 2 3 2 0 0 7 9 6 9 1
    0 1 0 1 7 5 6 0 0 1 1 1 3 4 1 0 0 7 9 6 9 1
    0 1 0 2 3 13 0 1 0 2 0 2 2 0 5 0 0 8 6 9 8 1
    0 1 0 2 5 4 9 0 0 1 0 2 2 3 2 0 0 7 9 6 9 1
    0 1 0 3 1 12 4 0 0 1 0 2 2 1 3 1 0 8 6 9 8 1
    0 1 0 3 2 11 3 0 0 2 0 1 3 2 2 1 0 8 6 9 8 1
    0 1 0 3 3 10 2 0 0 3 0 0 4 3 1 1 0 8 6 9 8 1
    0 1 0 3 3 9 3 0 1 2 0 1 3 1 4 0 0 8 6 9 8 2
    0 1 0 3 4 8 2 0 1 3 0 0 4 2 3 0 0 8 6 9 8 2
    0 1 0 5 0 10 1 0 5 0 0 0 4 0 4 1 0 9 3 12 7 1
    0 2 0 12 0 6 0 0 1 0 0 2 6 1 0 1 0 11 2 8 10 1
    1 0 0 0 6 5 8 0 0 2 0 1 4 4 0 0 0 7 9 6 9 1
    1 0 0 1 4 10 2 0 1 3 0 0 5 2 2 0 0 8 6 9 8 1
    1 0 0 4 14 0 4 0 0 0 0 4 1 2 0 0 1 9 8 2 12 1
    1 0 1 4 11 0 4 0 0 0 0 7 1 2 0 0 0 9 8 2 12 1
    2 0 0 8 1 8 0 0 2 0 0 2 8 0 0 0 0 11 2 8 10 2
     | Show Table
    DownLoad: CSV

    Table 11.  Strong $(3\mod 5)$-arcs in ${\rm{PG}}(2, 5)$ of cardinality $53$

    $A_1$ $A_2$ $A_3$ $B_1$ $B_2$ $B_3$ $B_4$ $B_5$ $B_6$ $B_7$ $B_8$ $C_1$ $C_2$ $C_3$ $C_4$ $C_5$ $D_1$ $\lambda_0$ $\lambda_1$ $\lambda_2$ $\lambda_3$ $\#$
    0 0 0 0 5 10 0 0 0 0 2 2 4 4 4 0 0 6 7 8 10 1
    0 0 0 0 6 4 5 1 0 0 1 3 2 8 1 0 0 5 10 5 11 1
    0 0 0 1 3 9 3 0 0 0 1 3 3 3 5 0 0 6 7 8 10 1
    0 0 0 1 4 3 8 1 0 0 0 4 1 7 2 0 0 5 10 5 11 1
    0 0 0 1 6 0 8 0 1 0 1 2 3 9 0 0 0 5 10 5 11 1
    0 0 0 2 2 7 5 0 0 1 0 3 3 3 5 0 0 6 7 8 10 1
    0 0 0 2 3 6 4 0 0 2 0 2 4 4 4 0 0 6 7 8 10 2
    0 0 0 3 0 11 1 0 1 1 0 1 6 2 3 2 0 7 4 11 9 1
    0 0 0 3 2 8 0 0 2 2 0 0 7 2 4 1 0 7 4 11 9 2
    0 0 0 9 3 6 0 0 0 0 0 3 6 0 3 0 1 9 3 7 12 1
    0 0 1 9 0 6 0 0 0 0 0 6 6 0 3 0 0 9 3 7 12 1
    0 1 0 1 12 0 0 2 0 0 0 11 0 4 0 0 0 7 9 1 14 1
    0 1 0 8 2 4 0 0 0 1 0 5 8 0 2 0 0 9 3 7 12 1
    1 0 0 10 0 0 0 0 5 0 0 0 15 0 0 0 0 10 0 10 11 1
    1 0 0 6 2 6 0 0 0 1 0 5 9 0 1 0 0 9 3 7 12 1
     | Show Table
    DownLoad: CSV

    Table 12.  Strong $(3\mod 5)$-arcs in ${\rm{PG}}(2, 5)$ of cardinality $58$

    $A_1$ $A_2$ $A_3$ $B_1$ $B_2$ $B_3$ $B_4$ $B_5$ $B_6$ $B_7$ $B_8$ $C_1$ $C_2$ $C_3$ $C_4$ $C_5$ $D_1$ $\lambda_0$ $\lambda_1$ $\lambda_2$ $\lambda_3$ $\#$
    0 0 0 0 0 10 0 1 0 0 0 5 5 0 10 0 0 5 5 10 11 1
    0 0 0 0 3 3 3 0 0 1 1 3 5 9 3 0 0 4 8 7 12 1
    0 0 0 1 1 2 6 0 0 1 0 4 4 8 4 0 0 4 8 7 12 1
    0 0 0 1 1 5 2 0 1 1 0 3 7 2 8 0 0 5 5 10 11 1
    0 0 0 1 1 6 1 0 0 2 0 2 8 4 5 1 0 5 5 10 11 1
    0 0 0 1 2 4 1 0 1 2 0 2 8 3 7 0 0 5 5 10 11 1
    0 0 0 1 3 0 4 0 0 3 0 2 6 10 2 0 0 4 8 7 12 1
    0 0 0 1 3 3 0 0 1 3 0 1 9 4 6 0 0 5 5 10 11 1
    0 0 0 2 1 4 0 0 4 0 0 0 12 0 6 2 0 6 2 13 10 1
    0 0 0 3 6 0 3 0 0 0 0 9 3 6 0 0 1 6 7 3 15 1
    0 0 1 3 3 0 3 0 0 0 0 12 3 6 0 0 0 6 7 3 15 1
     | Show Table
    DownLoad: CSV

    Table 13.  Strong $(3\mod 5)$-arcs in ${\rm{PG}}(2, 5)$ of cardinality $63$

    $A_1$ $A_2$ $A_3$ $B_1$ $B_2$ $B_3$ $B_4$ $B_5$ $B_6$ $B_7$ $B_8$ $C_1$ $C_2$ $C_3$ $C_4$ $C_5$ $D_1$ $\lambda_0$ $\lambda_1$ $\lambda_2$ $\lambda_3$ $\#$
    0 0 0 0 0 0 0 0 0 0 5 0 0 15 10 1 0 0 10 10 11 1
    0 0 0 0 0 0 0 0 0 3 2 1 2 6 15 2 0 1 7 13 10 1
    0 0 0 0 0 0 0 0 1 4 0 0 6 2 12 6 0 2 4 16 9 1
    0 0 0 0 0 1 4 1 0 0 0 4 2 14 4 0 1 2 9 6 14 1
    0 0 0 0 0 3 3 0 0 0 0 3 6 6 9 0 1 3 6 9 13 1
    0 0 0 0 0 6 0 0 0 0 0 0 12 3 6 3 1 4 3 12 12 1
    0 0 0 4 1 2 0 0 0 0 0 4 14 0 4 0 2 6 2 8 15 1
    0 0 1 0 0 0 0 0 0 3 0 3 9 9 6 0 0 3 6 9 13 1
    0 0 1 0 0 0 0 0 3 0 0 3 12 0 12 0 0 4 3 12 12 1
     | Show Table
    DownLoad: CSV

    Table 14.  Strong $(3\mod 5)$-arcs in ${\rm{PG}}(2, 5)$ of cardinality $68$

    $A_1$ $A_2$ $A_3$ $B_1$ $B_2$ $B_3$ $B_4$ $B_5$ $B_6$ $B_7$ $B_8$ $C_1$ $C_2$ $C_3$ $C_4$ $C_5$ $D_1$ $\lambda_0$ $\lambda_1$ $\lambda_2$ $\lambda_3$ $\#$
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 1 0 0 25 6 1
    0 0 0 0 0 0 0 1 0 0 0 0 0 0 25 3 2 0 5 15 11 1
    0 0 0 0 0 0 0 2 0 0 0 0 0 25 0 1 3 0 10 5 16 1
    0 0 0 0 3 0 0 0 0 0 0 6 6 12 0 0 4 3 6 4 18 1
    1 0 0 0 0 0 0 0 0 0 0 0 25 0 0 2 3 5 0 10 16 1
    1 0 0 0 0 0 0 1 0 0 0 25 0 0 0 0 4 5 5 0 21 1
     | Show Table
    DownLoad: CSV

    Table 15.  Strong $(3\mod 5)$-arcs in ${\rm{PG}}(2, 5)$ of cardinality $93$

    $A_1$ $A_2$ $A_3$ $B_1$ $B_2$ $B_3$ $B_4$ $B_5$ $B_6$ $B_7$ $B_8$ $C_1$ $C_2$ $C_3$ $C_4$ $C_5$ $D_1$ $\lambda_0$ $\lambda_1$ $\lambda_2$ $\lambda_3$ $\#$
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 0 0 0 31 1
     | Show Table
    DownLoad: CSV
  • [1] L. Baumert and R. McEliece, A note on the Griesmer bound, IEEE Transactions on Information Theory, 19 (1973), 134-135.  doi: 10.1109/tit.1973.1054939.
    [2] I. Bouyukliev, S. Bouyuklieva and S. Kurz, Computer classification of linear codes, IEEE Trans. Inform. Theory, 67 (2021), 7807–7814. arXiv preprint, arXiv: 2002.07826, (2020), 18 pp.
    [3] A. E. Brouwer and M. van Eupen, The correspondence between projective codes and $2$-weight codes, Designs, Codes and Cryptography, 11 (1997), 261-266.  doi: 10.1023/A:1008294128110.
    [4] R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bulletin of the London Mathematical Society, 18 (1986), 97-122.  doi: 10.1112/blms/18.2.97.
    [5] S. Dodunekov and J. Simonis, Codes and projective multisets, The Electronic Journal of Combinatorics, 5 (1998), Paper 37, 23 pp. doi: 10.37236/1375.
    [6] J. H. Griesmer, A bound for error-correcting codes, IBM Journal of Research and Development, 4 (1960), 532-542.  doi: 10.1147/rd.45.0532.
    [7] R. Hill, An extension theorem for linear codes, Designs, Codes and Cryptography, 17 (1999), 151-157.  doi: 10.1023/A:1008319024396.
    [8] R. Hill and P. Lizak, Extensions of linear codes, in Proceedings of 1995 IEEE International Symposium on Information Theory, IEEE, 1995,345.
    [9] S. Kurz, Lecture Notes: Advanced and Current Topics in Coding Theory, 2020.
    [10] I. N. Landjev and A. P. Rousseva, On the extendability of Griesmer arcs, Annual of Sofia University "St. Kliment Ohridski" – Faculty of Mathematics and Informatics, 101 (2013), 183–192.
    [11] I. Landjev and A. Rousseva, The non-existence of $(104, 22; 3, 5)$-arcs, Advances in Mathematics of Communications, 10 (2016), 601-611.  doi: 10.3934/amc.2016029.
    [12] I. Landjev and A. Rousseva, On the characterization of $(3 \mod 5)$ arcs, Electronic Notes in Discrete Mathematics, 57 (2017), 187-192.  doi: 10.1016/j.endm.2017.02.031.
    [13] I. Landjev and A. Rousseva, Divisible arcs, divisible codes, and the extension problem for arcs and codes, Problems of Information Transmission, 55 (2019), 226-240.  doi: 10.1134/s0555292319030033.
    [14] I. LandjevA. Rousseva and L. Storme, On the extendability of quasidivisible Griesmer arcs, Designs, Codes and Cryptography, 79 (2016), 535-547.  doi: 10.1007/s10623-015-0114-2.
    [15] T. Maruta, A new extension theorem for linear codes, Finite Fields and Their Applications, 10 (2004), 674-685.  doi: 10.1016/j.ffa.2004.02.001.
    [16] A. Rousseva, On the structure of $(t \mod q)$-arcs in finite projective geometries, Annuaire de l'Univ. de Sofia, 102 (2015), 16 pp.
    [17] G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes, Information and Control, 8 (1965), 170-179. 
  • 加载中

Tables(15)

SHARE

Article Metrics

HTML views(2039) PDF downloads(432) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return