[1]
|
J. Antrobus and H. Gluesing-Luerssen, Maximal Ferrers diagram codes: Constructions and genericity considerations, IEEE Transactions on Information Theory, 65 (2019), 6204-6223.
doi: 10.1109/TIT.2019.2926256.
|
[2]
|
M. Braun, P. R. J. Östergård and A. Wassermann, New lower bounds for binary constant-dimension subspace codes, Experimental Mathematics, 27 (2018), 179-183.
doi: 10.1080/10586458.2016.1239145.
|
[3]
|
H. Chen, X. He, J. Weng and L. Xu, New constructions of subspace codes using subsets of MRD codes in several blocks, IEEE Transactions on Information Theory, 66 (2020), 5317-5321.
doi: 10.1109/TIT.2020.2975776.
|
[4]
|
A. Cossidente, S. Kurz, G. Marino and F. Pavese, Combining subspace codes, Advances in Mathematics of Communications, (to appear), 15 pp.
|
[5]
|
A. Cossidente and F. Pavese, Subspace codes in PG(2n-1, q), Combinatorica, 37 (2017), 1073-1095.
doi: 10.1007/s00493-016-3354-5.
|
[6]
|
Ph. Delsarte, Bilinear forms over a finite field, with applications to coding theory, Journal of Combinatorial Theory, Series A, 25 (1978), 226-241.
doi: 10.1016/0097-3165(78)90015-8.
|
[7]
|
T. Etzion and N. Silberstein, Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams, IEEE Transactions on Information Theory, 55 (2009), 2909-2919.
doi: 10.1109/TIT.2009.2021376.
|
[8]
|
T. Etzion and A. Vardy, Error-correcting codes in projective space, IEEE Transactions on Information Theory, 57 (2011), 1165-1173.
doi: 10.1109/TIT.2010.2095232.
|
[9]
|
T. Feng, S. Kurz and S. Liu, Bounds for the multilevel construction, arXiv preprint, arXiv: 2011.06937, (2020), 95 pp.
|
[10]
|
M. Gadouleau and Z. Yan, Constant-rank codes and their connection to constant-dimension codes, IEEE Transactions on Information Theory, 56 (2010), 3207-3216.
doi: 10.1109/TIT.2010.2048447.
|
[11]
|
H. Gluesing-Luerssen, K. Morrison and C. Troha, Cyclic orbit codes and stabilizer subfields, Advances in Mathematics of Communications, 9 (2015), 177-197.
doi: 10.3934/amc.2015.9.177.
|
[12]
|
H. Gluesing-Luerssen and C. Troha, Construction of subspace codes through linkage, Advances in Mathematics of Communications, 10 (2016), 525-540.
doi: 10.3934/amc.2016023.
|
[13]
|
M. Greferath, M. O. Pavčevi$\acute{\rm c} $, N. Silberstein and M. Á. Vázquez-Castro, Network Coding and Subspace Designs, Springer, 2018.
doi: 10.1007/978-3-319-70293-3.
|
[14]
|
X. He, Construction of constant dimension codes from two parallel versions of linkage construction, IEEE Communications Letters, 24 (2020), 2392-2395.
doi: 10.1109/LCOMM.2020.3012488.
|
[15]
|
X. He, Y. Chen and Z. Zhang, Improving the linkage construction with Echelon-Ferrers for constant-dimension codes, IEEE Communications Letters, 24 (2020), 1875-1879.
doi: 10.1109/LCOMM.2020.2997928.
|
[16]
|
X. He, Y. Chen, Z. Zhang and K. Zhou, New construction for constant dimension subspace codes via a composite structure, IEEE Communications Letters, 25 (2021), 1422-1426.
doi: 10.1109/LCOMM.2021.3052734.
|
[17]
|
D. Heinlein, Generalized linkage construction for constant-dimension codes, IEEE Transactions on Information Theory, 67 (2020), 705-715.
doi: 10.1109/TIT.2020.3038272.
|
[18]
|
D. Heinlein, M. Kiermaier, S. Kurz and A. Wassermann, Tables of subspace codes, arXiv preprint, arXiv: 1601.02864, (2016), 44 pp.
|
[19]
|
D. Heinlein, M. Kiermaier, S. Kurz and A. Wassermann, A subspace code of size 333 in the setting of a binary q-analog of the Fano plane, Advances in Mathematics of Communications, 13 (2019), 457-475.
doi: 10.3934/amc.2019029.
|
[20]
|
D. Heinlein and S. Kurz, Asymptotic bounds for the sizes of constant dimension codes and an improved lower bound, in International Castle Meeting on Coding Theory and Applications, Springer, 2017,163–191.
doi: 10.1007/978-3-319-66278-7_15.
|
[21]
|
D. Heinlein and S. Kurz, Coset construction for subspace codes, IEEE Transactions on Information Theory, 63 (2017), 7651-7660.
doi: 10.1109/TIT.2017.2753822.
|
[22]
|
T. Honold and M. Kiermaier, On putative $q$-analogues of the Fano plane and related combinatorial structures, in Dynamical Systems, Number Theory and Applications: A Festschrift in Honor of Armin Leutbecher's 80th Birthday, World Scientific, 2016,141–175.
|
[23]
|
T. Honold, M. Kiermaier and S. Kurz, Optimal binary subspace codes of length 6, constant dimension 3 and minimum distance 4, Contemp. Math., 632 (2015), 157-176.
doi: 10.1090/conm/632/12627.
|
[24]
|
T. Honold, M. Kiermaier and S. Kurz, Classification of large partial plane spreads in PG(6, 2) and related combinatorial objects, Journal of Geometry, 110 (2019), 1-31.
doi: 10.1007/s00022-018-0459-6.
|
[25]
|
M. Kiermaier and S. Kurz, On the lengths of divisible codes, IEEE Transactions on Information Theory, 66 (2020), 4051-4060.
doi: 10.1109/TIT.2020.2968832.
|
[26]
|
S. Kurz, A note on the linkage construction for constant dimension codes, arXiv preprint, arXiv: 1906.09780, (2019), 13 pp.
|
[27]
|
S. Kurz, Generalized LMRD code bounds for constant dimension codes, IEEE Communications Letters, 24 (2020), 2100-2103.
doi: 10.1109/LCOMM.2020.3003132.
|
[28]
|
S. Kurz, Lifted codes and the multilevel construction for constant dimension codes, arXiv preprint, arXiv: 2004.14241, (2020), 40 pp.
|
[29]
|
S. Kurz, Subspaces intersecting in at most a point, Designs, Codes and Cryptography, 88 (2020), 595-599.
doi: 10.1007/s10623-019-00699-6.
|
[30]
|
H. Lao, H. Chen, J. Weng and X. Tan, Parameter-controlled inserting constructions of constant dimension subspace codes, arXiv preprint, arXiv: 2008.09944, (2020), 48 pp.
|
[31]
|
F. Li, Construction of constant dimension subspace codes by modifying linkage construction, IEEE Transactions on Information Theory, 66 (2019), 2760-2764.
doi: 10.1109/TIT.2019.2960343.
|
[32]
|
S. Liu, Y. Chang and T. Feng, Constructions for optimal Ferrers diagram rank-metric codes, IEEE Transactions on Information Theory, 65 (2019), 4115-4130.
doi: 10.1109/TIT.2019.2894401.
|
[33]
|
S. Liu, Y. Chang and T. Feng, Parallel multilevel constructions for constant dimension codes, IEEE Transactions on Information Theory, 66 (2020), 6884-6897.
doi: 10.1109/TIT.2020.3004315.
|
[34]
|
Y. Niu, Q. Yue and D. Huang, New constant dimension subspace codes from generalized inserting construction, IEEE Communications Letters, 25 (2020), 1066-1069.
doi: 10.1109/LCOMM.2020.3046042.
|
[35]
|
J. Sheekey, MRD codes: Constructions and connections, in Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications, vol. 23 of Radon Series on Computational and Applied Mathematics
doi: 10.1515/9783110642094-013.
|
[36]
|
N. Silberstein and T. Etzion, Large constant dimension codes and lexicodes, Advances in Mathematics of Communications, 5 (2011), 177-189.
doi: 10.3934/amc.2011.5.177.
|
[37]
|
N. Silberstein and A.-L. Trautmann, Subspace codes based on graph matchings, Ferrers diagrams, and pending blocks, IEEE Transactions on Information Theory, 61 (2015), 3937-3953.
doi: 10.1109/TIT.2015.2435743.
|
[38]
|
A.-L. Trautmann and J. Rosenthal, New improvements on the Echelon-Ferrers construction, in Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems–MTNS, vol. 5.9, 2010, 405-408
|
[39]
|
S.-T. Xia and F.-W. Fu, Johnson type bounds on constant dimension codes, Designs, Codes and Cryptography, 50 (2009), 163-172.
doi: 10.1007/s10623-008-9221-7.
|
[40]
|
L. Xu and H. Chen, New constant-dimension subspace codes from maximum rank distance codes, IEEE Transactions on Information Theory, 64 (2018), 6315-6319.
doi: 10.1109/TIT.2018.2839596.
|