y4 | y8 | y12 | y16 | y20 | y24 | total | |
D11 | 45 | 19 | 15 | 2 | 33 | 4 | 118 |
C56,1 | 16 | 3 | 1 | 0 | 10 | 26 | 56 |
C56,2 | 34 | 27 | 26 | 1 | 3 | 14 | 105 |
C56,3 | 10 | 0 | 23 | 2 | 0 | 24 | 59 |
C56,4 | 10 | 109 | 17 | 58 | 2 | 16 | 212 |
C56,5 | 17 | 53 | 25 | 11 | 5 | 4 | 115 |
From a given [n, k] code C, we give a method for constructing many [n, k] codes C' such that the hull dimensions of C and C' are identical. This method can be applied to constructions of both self-dual codes and linear complementary dual codes (LCD codes for short). Using the method, we construct 661 new inequivalent extremal doubly even [56, 28, 12] codes. Furthermore, constructing LCD codes by the method, we improve some of the previously known lower bounds on the largest minimum weights of binary LCD codes of length 26 ≤ n ≤ 40.
Citation: |
Table 1.
Inequivalent extremal doubly even
y4 | y8 | y12 | y16 | y20 | y24 | total | |
D11 | 45 | 19 | 15 | 2 | 33 | 4 | 118 |
C56,1 | 16 | 3 | 1 | 0 | 10 | 26 | 56 |
C56,2 | 34 | 27 | 26 | 1 | 3 | 14 | 105 |
C56,3 | 10 | 0 | 23 | 2 | 0 | 24 | 59 |
C56,4 | 10 | 109 | 17 | 58 | 2 | 16 | 212 |
C56,5 | 17 | 53 | 25 | 11 | 5 | 4 | 115 |
Table 2.
i | Pi | Si |
1 | {2,5} | {1,2,3,4,5,6,7,8,9,11} |
2 | {1,2,4} | {3} |
Table 3.
Cn,k,d | x | y |
C37,22,6 | (010110011011111) | (110010110000001) |
C38,13,11 | (0010011100110001011000100) | (1110100001110101110001101) |
Table 4.
n\k | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
26 | 9 | 8 | 8 | 8 | 7 | 6 | 5-6 | 5 | 4 |
27 | 9 | 9 | 8 | 8 | 7 | 6 | 6 | 6 | 5 |
28 | 10 | 10 | 8 | 8 | 8 | 7 | 6 | 6 | 5-6 |
29 | 10 | 10 | 9 | 8 | 8 | 8 | 6 | 6 | 6 |
30 | 11 | 10 | 9-10 | 9 | 8 | 8 | 6-7 | 6 | 6 |
31 | 11 | 10 | 10 | 10 | 9 | 8 | 7-8 | 6-7 | 6 |
32 | 12 | 11 | 10 | 10 | 9-10 | 8-9 | 7-8 | 7-8 | 6-7 |
33 | 12 | 12 | 10-11 | 10 | 10 | 9-10 | 8-9 | 8 | 6-8 |
34 | 13 | 12 | 11-12 | 10-12 | 10 | 10 | 9-10 | 8-9 | 7-8 |
35 | 13-14 | 12-13 | 12 | 10-12 | 10-11 | 10 | 9-10 | 9-10 | 7-8 |
36 | 14 | 12-14 | 12-13 | 11-12 | 10-12 | 10-11 | 10 | 10 | 8-9 |
37 | 14 | 12-14 | 12-14 | 12-13 | 10-12 | 10-12 | 10-11 | 10 | 9-10 |
38 | 14-15 | 13-14 | 12-14 | 12-14 | 11*-12 | 10-12 | 10-12 | 10-11 | 9-10 |
39 | 14-16 | 14-15 | 13-14 | 12-14 | 11-13 | 11-12 | 10-12 | 10-12 | 10-11 |
40 | 15-16 | 14-16 | 13-15 | 13-14 | 12-14 | 11-13 | 10-12 | 10-12 | 10-12 |
Table 5. dLCD(n, k), where 26 ≤ n ≤ 40, 18 ≤ k ≤ 26
n\k | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
26 | 4 | 4 | 4 | ||||||
27 | 4 | 4 | 4 | 3 | |||||
28 | 5 | 4 | 4 | 4 | 3 | ||||
29 | 6 | 5 | 4 | 4 | 4 | 3 | |||
30 | 6 | 5 | 5 | 4 | 4 | 4 | 3 | ||
31 | 6 | 6 | 6 | 5 | 4 | 4 | 4 | 3 | |
32 | 6 | 6 | 6 | 5-6 | 5 | 4 | 4 | 3-4 | 3 |
33 | 6-7 | 6 | 6 | 6 | 6 | 5 | 4 | 4 | 4 |
34 | 6-8 | 6-7 | 6 | 6 | 6 | 5-6 | 4 | 4 | 4 |
35 | 7-8 | 6-8 | 6-7 | 5-6 | 6 | 6 | 5 | 4 | 4 |
36 | 8 | 7-8 | 6-8 | 6-7 | 6 | 6 | 6 | 5 | 4 |
37 | 8-9 | 7-8 | 7-8 | 6-8 | 6*-7 | 6 | 6 | 5-6 | 5 |
38 | 9-10 | 8-9 | 8 | 7-8 | 6-8 | 6-7 | 6 | 6 | 6 |
39 | 10 | 9-10 | 8-9 | 7-8 | 7-8 | 6-8 | 6-7 | 6 | 6 |
40 | 10-11 | 9-10 | 9-10 | 7-9 | 8 | 7-8 | 6-8 | 6-7 | 6 |
Table 6. dLCD(n, k), where 33 ≤ n ≤ 40, 27 ≤ k ≤ 34
n\k | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |
33 | 3 | |||||||
34 | 3-4 | 3 | ||||||
35 | 4 | 4 | 3 | |||||
36 | 4 | 4 | 3-4 | 3 | ||||
37 | 4 | 4 | 4 | 4 | 3 | |||
38 | 5 | 4 | 4 | 4 | 3-4 | 3 | ||
39 | 5-6 | 5 | 4 | 4 | 4 | 4 | 2-3 | |
40 | 6 | 6 | 5 | 4 | 4 | 4 | 3-4 | 2-3 |
[1] |
M. Araya and M. Harada, On the minimum weights of binary linear complementary dual codes, Cryptogr. Commun., 12 (2020), 285-300.
doi: 10.1007/s12095-019-00402-5.![]() ![]() ![]() |
[2] |
M. Araya and M. Harada, On the classification of quaternary optimal Hermitian LCD codes, arXiv: 2011.04139.
![]() |
[3] |
M. Araya, M. Harada and K. Saito, Characterization and classification of optimal LCD codes, Des. Codes Cryptogr., 89 (2021), 617-640.
doi: 10.1007/s10623-020-00834-8.![]() ![]() ![]() |
[4] |
M. Araya, M. Harada and K. Saito, On the minimum weights of binary LCD codes and ternary LCD codes, Finite Fields Appl., 76 (2021), 101925.
doi: 10.1016/j.ffa.2021.101925.![]() ![]() ![]() |
[5] |
V. K. Bhargava, G. Young and A. K. Bhargava, A characterization of a (56, 28) extremal self-dual code, IEEE Trans. Inform. Theory, 27 (1981), 258-260.
doi: 10.1109/TIT.1981.1056308.![]() ![]() ![]() |
[6] |
W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. Ⅰ. The user language, J. Symbolic Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125.![]() ![]() ![]() |
[7] |
S. Bouyuklieva, Optimal binary LCD codes, Des. Codes Cryptogr., 89 (2021), 2445-2461.
doi: 10.1007/s10623-021-00929-w.![]() ![]() ![]() |
[8] |
F. C. Bussemarker and V. D. Tonchev, New extremal doubly-even codes of length $56$ derived from Hadamard matrices of order 28, Discrete Math., 76 (1989), 45-49.
doi: 10.1016/0012-365X(89)90286-0.![]() ![]() ![]() |
[9] |
C. Carlet and S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, Adv. Math. Commun., 10 (2016), 131-150.
doi: 10.3934/amc.2016.10.131.![]() ![]() ![]() |
[10] |
S. T. Dougherty, J.-L. Kim, B. Ozkaya, L. Sok and P. Solé, The combinatorics of LCD codes: Linear programming bound and orthogonal matrices, Int. J. Inf. Coding Theory, 4 (2017), 116-128.
doi: 10.1504/IJICOT.2017.083827.![]() ![]() ![]() |
[11] |
L. Galvez, J.-L. Kim, N. Lee, Y. G. Roe and B.-S. Won, Some bounds on binary LCD codes, Cryptogr. Commun., 10 (2018), 719-728.
doi: 10.1007/s12095-017-0258-1.![]() ![]() ![]() |
[12] |
M. Grassl, Code tables: Bounds on the parameters of various types of codes, Available online at http://www.codetables.de/, Accessed on 5 Aug 2021.
![]() |
[13] |
K. Guenda, S. Jitman and T. A. Gulliver, Constructions of good entanglement-assisted quantum error correcting codes, Des. Codes Cryptogr., 86 (2018), 121-136.
doi: 10.1007/s10623-017-0330-z.![]() ![]() ![]() |
[14] |
M. Harada, Existence of new extremal doubly-even codes and extremal singly-even codes, Des. Codes Cryptogr., 8 (1996), 273-283.
doi: 10.1023/A:1027303722125.![]() ![]() ![]() |
[15] |
M. Harada, Self-orthogonal $3$-$(56, 12, 65)$ designs and extremal doubly-even self-dual codes of length $56$, Des. Codes Cryptogr., 38 (2006), 5-16.
doi: 10.1007/s10623-004-5657-6.![]() ![]() ![]() |
[16] |
M. Harada, Construction of binary LCD codes, ternary LCD codes and quaternary Hermitian LCD codes, Des. Codes Cryptogr., 89 (2021), 2295-2312.
doi: 10.1007/s10623-021-00916-1.![]() ![]() ![]() |
[17] |
M. Harada, T. A. Gulliver and H. Kaneta, Classification of extremal double-circulant self-dual codes of length up to $62$, Discrete Math., 188 (1998), 127-136.
doi: 10.1016/S0012-365X(97)00250-1.![]() ![]() ![]() |
[18] |
M. Harada and H. Kimura, New extremal doubly-even $[64, 32, 12]$ codes, Des. Codes Cryptogr., 6 (1995), 91-96.
doi: 10.1007/BF01398007.![]() ![]() ![]() |
[19] |
M. Harada and K. Saito, Binary linear complementary dual codes, Cryptogr. Commun., 11 (2019), 677-696.
doi: 10.1007/s12095-018-0319-0.![]() ![]() ![]() |
[20] |
W. C. Huffman and V. Pless, Fundamentals of Error-correcting Codes, Cambridge University Press, 2003.
doi: 10.1017/CBO9780511807077.![]() ![]() ![]() |
[21] |
H. Kimura, Extremal doubly even (56, 28, 12) codes and Hadamard matrices of order 28, Australas. J. Combin., 10 (1994), 171-180.
![]() ![]() |
[22] |
C. L. Mallows and N. J. A. Sloane, An upper bound for self-dual codes, Inform. Control., 22 (1973), 188-200.
doi: 10.1016/S0019-9958(73)90273-8.![]() ![]() ![]() |
[23] |
J. L. Massey, Linear codes with complementary duals, Discrete Math., 106/107 (1992), 337-342.
doi: 10.1016/0012-365X(92)90563-U.![]() ![]() ![]() |
[24] |
N. Yankov and M. H. Lee, New binary self-dual codes of length 50–60, Des. Codes Cryptogr., 73 (2014), 983-996.
doi: 10.1007/s10623-013-9839-y.![]() ![]() ![]() |
[25] |
N. Yankov and R. Russeva, Binary self-dual codes of length 52 to 60 with an automorphism of order 7 or 13, IEEE Trans. Inform. Theory, 57 (2011), 7498-7506.
doi: 10.1109/TIT.2011.2155619.![]() ![]() ![]() |
[26] |
V. Yorgov, A method for constructing inequivalent self-dual codes with application to length 56, IEEE Trans. Inform. Theory, 33 (1987), 72-82.
doi: 10.1109/TIT.1987.1057273.![]() ![]() ![]() |
Matrices