$(TN, q, Ml, \omega-1, TH_m)$ |
$M=\lceil \frac{N}{\omega}\rceil$, $gcd(l, N)=1$, $T=\lambda\omega+1$, $\lambda\ge1, T < lN.$ |
Optimal |
Not optimal family size |
Inequivalent |
[9] |
$(TN, q, M, \omega-1, TH_a)$ |
$M\omega=N, T\ge2$, $gcd(s, N)=1.$ |
Optimal |
Not optimal family size |
Inequivalent |
[10] |
$(lN, q, M, \omega l-1, lH_m)$ |
$M=\lceil \frac{N}{\omega}\rceil, gcd(l, N)=1.$ |
Optimal |
Not optimal family size |
Inequivalent |
[12] |
$(lN, q$, $M\left[\omega-(x-1)(l-1)\right]$, $l-1$, $lH_m)$ |
$x\ne1, 0<x<\frac{\omega}{l}-1$, $M=\lceil \frac{N}{\omega}\rceil, \omega>2l$, $xl-x<r<\omega.$ |
Optimal |
Not optimal family size |
Inequivalent |
[6] |
$(lN, q, nM(\omega-1), l-n, {lH}_m)$ |
$0<n\leq\lceil\frac{l}{2}\rceil, l>2$, $\omega>2l, M=\lceil\frac{N}{\omega}\rceil$. |
Optimal |
Not optimal family size |
Inequivalent |
Thm.1 |
$(lN, q, Ml+nM(\omega-{xl}+x-1), l-n, {lH}_m)$ |
$0<n\leq\lceil\frac{l}{2}\rceil, n\ne1$, $l>2, \omega>2l, M=\lceil\frac{N}{\omega}\rceil$, $0<x<\frac{\omega-1}{l-1}, x\ne1$. |
Optimal |
Not optimal family size |
Inequivalent |
Thm.3 |
$(lN, q, M\omega, l-2, lH_m)$ |
$x=1, n=1, l>2$, $\omega>2l, M=\lceil\frac{N}{\omega}\rceil$. |
Optimal |
Not optimal family size |
Inequivalent |
Thm.3 |
|
$(s(q^m-1), q, l, L_H, s(q^{m-1}-1))$ |
$m\ge1, q^m-1=(L_H+1)l$, $gcd(s, q^m-1)=1, s\leq l$. |
Optimal |
Not optimal family size |
Equivalent |
[8] |
$(p^2(q-1), pq, pq, min\left\{p^2-1, q-2\right\}, p)$ |
$gcd(p, q-1)=1, 2p\leq q-1.$ |
Optimal |
Not optimal family size |
Inequivalent |
[1] |
$(p^2(p^2-1), p^2, p, p^2-2, p(p-1))$ |
$gcd(p^2, p^2-1)=1.$ |
Optimal |
Not optimal family size |
Inequivalent |
[21] |
$\big(q^k(q^m-1), q^k, nM(\omega-1), q^k-n, q^m\big)$ |
$1\leq k\leq m$, $0<n\leq\lceil\frac{q^k}{2}\rceil$, $\omega>2q^k$, $M=\lceil\frac{q^m-1}{\omega}\rceil$. |
Optimal |
Not optimal family size |
Inequivalent |
Cor.1 |
|
$(q^m-1, q^k, Tq^k, L_H, q^{m-k})$ |
$m\ge1$, $0<k\leq m$, $q^m-1=T(L_H+1)$. |
Optimal |
Not optimal family size |
Inequivalent |
[20] |
$(q^m-1, q^k, nM(\omega-1), l-n, q^{m-k}-1)$ |
$m\ge1, 0<k\leq m$, $l|(q-1)$, $gcd(l, m)=1$, $0<n\leq\lceil\frac{l}{2}\rceil$, $\omega>2l$, $M=\lceil\frac{q^m-1}{l\omega}\rceil$. |
Optimal |
Not optimal family size |
Inequivalent |
Cor.2 |
|
$(\frac{q^m-1}{l}, q^k, T, L_H, \frac{q^{m-k}-1}{l})$ |
$m\ge1, 0<k\leq m$, $l|(q-1), gcd(l, m)=1$, $q^m-1=T(L_H+1)$. |
Optimal |
Not optimal family size |
Equivalent |
[20] |
$(\frac{q^m-1}{l}, q^k, \frac{q^m-1}{T}, \frac{T}{d'}-1, \frac{q^{m-k}-1}{l})$ |
$m\ge1, 0<k\leq m$, $l|(q-1)$, $gcd(l, m)=1$, $T\mid q^m-1$, $T\nmid l$, $gcd(T, l)=d'$. |
Optimal |
Not optimal family size |
Equivalent |
[19] |
$(\frac{q-1}{l}, q, \frac{q^m-1}{\omega}, \omega-1, m-1)$ |
$\omega|\frac{q-1}{l}$, $\omega\ne 1$, $1\leq m<min\left\{i:i|\frac{q-1}{l}\right\}$. |
Not Optimal |
optimal family size |
Inequivalent |
[7] |
$\big(e'\frac{(q^m-1)}{l}, \frac{e'}{l}+1, nM(\omega-1), \frac{e'}{l}-n, e'q^k\big)$ |
$1\leq k\leq m-1, l|(q-1)$, $l\ge2$, $e'=q^{m-k}-1$, $0<n\leq\lceil\frac{e'}{2l}\rceil$, $\omega>\frac{2e'}{l}$, $M=\lceil\frac{q^m-1}{\omega}\rceil$. |
Optimal |
Not optimal family size |
Inequivalent |
Cor.3 |