doi: 10.3934/amc.2021071
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Constructions of optimal low hit zone frequency hopping sequence sets with large family size

School of Computer and Software Engineering, Xihua University, Chengdu, Sichuan 610039, China

* Corresponding author: Xianhua Niu

Received  July 2021 Revised  November 2021 Early access January 2022

Frequency hopping sequences with low hit zone is significant for application in quasi synchronous multiple-access systems. In this paper, we obtained two constructions of optimal frequency hopping sequence sets with low hit zone based on interleaving techniques. The presented low hit zone frequency hopping sequence sets are with new and flexible parameters and large family size which can meet the needs of the practical applications. Moreover, all the sequences in the proposed sets are cyclically inequivalent. Some low hit zone frequency hopping sequence sets constructed in literatures are included in our family. The proposed frequency hopping sequence sets with low hit zone are contributed for quasi-synchronous frequency hopping multiple access system to reduce or eliminate multiple-access interference.

Citation: Xiujie Zhang, Xianhua Niu, Xin Tan. Constructions of optimal low hit zone frequency hopping sequence sets with large family size. Advances in Mathematics of Communications, doi: 10.3934/amc.2021071
References:
[1]

J.-H. Chung and K. Yang, New classes of optimal low-hit-zone frequency-hopping sequence sets by cartesian product, IEEE Trans. Inf. Theory, 59 (2013), 726-732.  doi: 10.1109/TIT.2012.2213065.

[2]

P. Fan and M. Darnell, Sequence Design for Communications Applications, RSP-John Wiley Sons Inc., London, 1996.

[3]

G. Gong, Theory and applications of q-ary interleaved sequences, IEEE Trans. Inform. Theory, 41 (1995), 400-411.  doi: 10.1109/18.370141.

[4]

G. Gong, New designs for signal sets with low cross correlation, balance property, and large linear span: Gf(p) case, IEEE Trans. Inf. Theory, 48 (2002), 2847-2867.  doi: 10.1109/TIT.2002.804044.

[5]

H. HanD. Peng and U. Parampalli, New sets of optimal low-hit-zone frequency-hopping sequences based on m-sequences, Cryptogr. Commun., 9 (2017), 511-522.  doi: 10.1007/s12095-016-0192-7.

[6]

L. LingX. NiuB. Zeng and X. Liu, New classes of optimal low hit zone frequency hopping sequence set with large family size, IEICE Trans. Fundam. Electron., Commun. Comput. Sci., E101.A (2018), 2213-2216. 

[7]

X. LiuS. Qin and Z. Qi, Low-hit-zone frequency/time hopping sequence sets with large family size, IEEE Access, 7 (2019), 181733-181739.  doi: 10.1109/ACCESS.2019.2959718.

[8]

W. Ma and S. Sun, New designs of frequency hopping sequences with low hit zone, Des. Codes Cryptogr., 60 (2011), 145-153.  doi: 10.1007/s10623-010-9422-8.

[9]

X. NiuD. Peng and Z. Zhou, New classes of optimal low hit zone frequency hopping sequences with new parameters by interleaving technique, IEICE Trans. Fundam. Electron., Commun. Comput Sci., E95-A (2012), 1835-1842. 

[10]

X. NiuD. Peng and Z. Zhou, New classes of optimal frequency hopping sequences with low hit zone, Adv. Math. Commun., 7 (2013), 293-310.  doi: 10.3934/amc.2013.7.293.

[11]

X. NiuC. XingY. Liu and L. Zhou, A construction of optimal frequency hopping sequence set via combination of multiplicative and additive groups of finite fields, IEEE Trans. Inform. Theory, 66 (2020), 5310-5315.  doi: 10.1109/TIT.2020.2972388.

[12]

X. Niu and Z. Zhou, New classes of optimal low hit zone frequency hopping sequences with new parameters, IEICE Trans. Fundam., E97-A (2014), 2567-2571.  doi: 10.1587/transfun.E97.A.2567.

[13]

D. Peng and P. Fan, Lower bounds on the hamming auto- and cross correlations of frequency-hopping sequences, IEEE Trans. Inform. Theory, 50 (2004), 2149-2154.  doi: 10.1109/TIT.2004.833362.

[14]

D. PengP. Fan and M. H. Lee, Lower bounds on the periodic hamming correlations of frequency hopping sequences with low hit zone, Sci. China Ser., 49 (2006), 208-218.  doi: 10.1007/s11432-006-0208-6.

[15]

C. U. Press, Signal Design for Good Correlation for Wireless Communication, Cryptography, and Radar, Signal design for good correlation for wireless communication, cryptography, and radar, 2005.

[16]

C. WangD. Peng and L. Zhou, New constructions of optimal frequency-hopping sequence sets with low-hit-zone, Int. J. Found. Comput. Sci., 27 (2016), 53-66.  doi: 10.1142/S0129054116500040.

[17]

X. Wang and P. Fan, A class of frequency hopping sequences with no hit zone, International Conference on Parallel and Distributed Computing, (2003), 896–898.

[18]

X. Ye and P. Fan, Two classes of frequency-hopping sequences with no hit zone, International Conference on Parallel and Distributed Computing, (2003), 304–306.

[19]

W. Yin, C. Xiang and F. W. Fu, Two constructions of low-hit-zone frequency-hopping sequence sets, Advances in Mathematics of Communications. doi: 10.3934/amc.2020110.

[20]

L. ZhouD. PengH. LiangC. Wang and Z. Ma, Constructions of optimal low-hit-zone frequency hopping sequence sets, Des. Codes Cryptogr., 85 (2017), 219-232.  doi: 10.1007/s10623-016-0299-z.

[21]

L. ZhouD. PengH. LiangC. Wang and Z. Ma, Generalized methods to construct low-hit-zone frequency-hopping sequence sets and optimal constructions, Crytogr. Commun., 9 (2017), 707-728.  doi: 10.1007/s12095-017-0211-3.

[22]

Z. ZhouX. TangD. Peng and U. Parampalli, New constructions for optimal sets of frequency-hopping sequences, IEEE Trans. Inform. Theory, 57 (2011), 3831-3840.  doi: 10.1109/TIT.2011.2137290.

show all references

References:
[1]

J.-H. Chung and K. Yang, New classes of optimal low-hit-zone frequency-hopping sequence sets by cartesian product, IEEE Trans. Inf. Theory, 59 (2013), 726-732.  doi: 10.1109/TIT.2012.2213065.

[2]

P. Fan and M. Darnell, Sequence Design for Communications Applications, RSP-John Wiley Sons Inc., London, 1996.

[3]

G. Gong, Theory and applications of q-ary interleaved sequences, IEEE Trans. Inform. Theory, 41 (1995), 400-411.  doi: 10.1109/18.370141.

[4]

G. Gong, New designs for signal sets with low cross correlation, balance property, and large linear span: Gf(p) case, IEEE Trans. Inf. Theory, 48 (2002), 2847-2867.  doi: 10.1109/TIT.2002.804044.

[5]

H. HanD. Peng and U. Parampalli, New sets of optimal low-hit-zone frequency-hopping sequences based on m-sequences, Cryptogr. Commun., 9 (2017), 511-522.  doi: 10.1007/s12095-016-0192-7.

[6]

L. LingX. NiuB. Zeng and X. Liu, New classes of optimal low hit zone frequency hopping sequence set with large family size, IEICE Trans. Fundam. Electron., Commun. Comput. Sci., E101.A (2018), 2213-2216. 

[7]

X. LiuS. Qin and Z. Qi, Low-hit-zone frequency/time hopping sequence sets with large family size, IEEE Access, 7 (2019), 181733-181739.  doi: 10.1109/ACCESS.2019.2959718.

[8]

W. Ma and S. Sun, New designs of frequency hopping sequences with low hit zone, Des. Codes Cryptogr., 60 (2011), 145-153.  doi: 10.1007/s10623-010-9422-8.

[9]

X. NiuD. Peng and Z. Zhou, New classes of optimal low hit zone frequency hopping sequences with new parameters by interleaving technique, IEICE Trans. Fundam. Electron., Commun. Comput Sci., E95-A (2012), 1835-1842. 

[10]

X. NiuD. Peng and Z. Zhou, New classes of optimal frequency hopping sequences with low hit zone, Adv. Math. Commun., 7 (2013), 293-310.  doi: 10.3934/amc.2013.7.293.

[11]

X. NiuC. XingY. Liu and L. Zhou, A construction of optimal frequency hopping sequence set via combination of multiplicative and additive groups of finite fields, IEEE Trans. Inform. Theory, 66 (2020), 5310-5315.  doi: 10.1109/TIT.2020.2972388.

[12]

X. Niu and Z. Zhou, New classes of optimal low hit zone frequency hopping sequences with new parameters, IEICE Trans. Fundam., E97-A (2014), 2567-2571.  doi: 10.1587/transfun.E97.A.2567.

[13]

D. Peng and P. Fan, Lower bounds on the hamming auto- and cross correlations of frequency-hopping sequences, IEEE Trans. Inform. Theory, 50 (2004), 2149-2154.  doi: 10.1109/TIT.2004.833362.

[14]

D. PengP. Fan and M. H. Lee, Lower bounds on the periodic hamming correlations of frequency hopping sequences with low hit zone, Sci. China Ser., 49 (2006), 208-218.  doi: 10.1007/s11432-006-0208-6.

[15]

C. U. Press, Signal Design for Good Correlation for Wireless Communication, Cryptography, and Radar, Signal design for good correlation for wireless communication, cryptography, and radar, 2005.

[16]

C. WangD. Peng and L. Zhou, New constructions of optimal frequency-hopping sequence sets with low-hit-zone, Int. J. Found. Comput. Sci., 27 (2016), 53-66.  doi: 10.1142/S0129054116500040.

[17]

X. Wang and P. Fan, A class of frequency hopping sequences with no hit zone, International Conference on Parallel and Distributed Computing, (2003), 896–898.

[18]

X. Ye and P. Fan, Two classes of frequency-hopping sequences with no hit zone, International Conference on Parallel and Distributed Computing, (2003), 304–306.

[19]

W. Yin, C. Xiang and F. W. Fu, Two constructions of low-hit-zone frequency-hopping sequence sets, Advances in Mathematics of Communications. doi: 10.3934/amc.2020110.

[20]

L. ZhouD. PengH. LiangC. Wang and Z. Ma, Constructions of optimal low-hit-zone frequency hopping sequence sets, Des. Codes Cryptogr., 85 (2017), 219-232.  doi: 10.1007/s10623-016-0299-z.

[21]

L. ZhouD. PengH. LiangC. Wang and Z. Ma, Generalized methods to construct low-hit-zone frequency-hopping sequence sets and optimal constructions, Crytogr. Commun., 9 (2017), 707-728.  doi: 10.1007/s12095-017-0211-3.

[22]

Z. ZhouX. TangD. Peng and U. Parampalli, New constructions for optimal sets of frequency-hopping sequences, IEEE Trans. Inform. Theory, 57 (2011), 3831-3840.  doi: 10.1109/TIT.2011.2137290.

Figure 1.  The Maximum Periodic Hamming Correlation of $ S $
Figure 2.  The Maximum Periodic Hamming Correlation of $ S $
Table 1.  SOME OPTIMAL LHZ FHS SETS WITH OPTIMAL HAMMING CORRELATION
Parameters
$(N, q, l, L_H, H_m)$
Constraints According to the bound(3) According to the bound(4) Cyclical equivalence Ref.
$(TN, q, Ml, \omega-1, TH_m)$ $M=\lceil \frac{N}{\omega}\rceil$, $gcd(l, N)=1$,
$T=\lambda\omega+1$, $\lambda\ge1, T < lN.$
Optimal Not optimal family size Inequivalent [9]
$(TN, q, M, \omega-1, TH_a)$ $M\omega=N, T\ge2$,
$gcd(s, N)=1.$
Optimal Not optimal family size Inequivalent [10]
$(lN, q, M, \omega l-1, lH_m)$ $M=\lceil \frac{N}{\omega}\rceil, gcd(l, N)=1.$ Optimal Not optimal family size Inequivalent [12]
$(lN, q$, $M\left[\omega-(x-1)(l-1)\right]$, $l-1$, $lH_m)$ $x\ne1, 0<x<\frac{\omega}{l}-1$,
$M=\lceil \frac{N}{\omega}\rceil, \omega>2l$,
$xl-x<r<\omega.$
Optimal Not optimal family size Inequivalent [6]
$(lN, q, nM(\omega-1), l-n, {lH}_m)$ $0<n\leq\lceil\frac{l}{2}\rceil, l>2$,
$\omega>2l, M=\lceil\frac{N}{\omega}\rceil$.
Optimal Not optimal family size Inequivalent Thm.1
$(lN, q, Ml+nM(\omega-{xl}+x-1), l-n, {lH}_m)$ $0<n\leq\lceil\frac{l}{2}\rceil, n\ne1$,
$l>2, \omega>2l, M=\lceil\frac{N}{\omega}\rceil$,
$0<x<\frac{\omega-1}{l-1}, x\ne1$.
Optimal Not optimal family size Inequivalent Thm.3
$(lN, q, M\omega, l-2, lH_m)$ $x=1, n=1, l>2$,
$\omega>2l, M=\lceil\frac{N}{\omega}\rceil$.
Optimal Not optimal family size Inequivalent Thm.3
$(s(q^m-1), q, l, L_H, s(q^{m-1}-1))$ $m\ge1, q^m-1=(L_H+1)l$,
$gcd(s, q^m-1)=1, s\leq l$.
Optimal Not optimal family size Equivalent [8]
$(p^2(q-1), pq, pq, min\left\{p^2-1, q-2\right\}, p)$ $gcd(p, q-1)=1, 2p\leq q-1.$ Optimal Not optimal family size Inequivalent [1]
$(p^2(p^2-1), p^2, p, p^2-2, p(p-1))$ $gcd(p^2, p^2-1)=1.$ Optimal Not optimal family size Inequivalent [21]
$\big(q^k(q^m-1), q^k, nM(\omega-1), q^k-n, q^m\big)$ $1\leq k\leq m$, $0<n\leq\lceil\frac{q^k}{2}\rceil$,
$\omega>2q^k$, $M=\lceil\frac{q^m-1}{\omega}\rceil$.
Optimal Not optimal family size Inequivalent Cor.1
$(q^m-1, q^k, Tq^k, L_H, q^{m-k})$ $m\ge1$, $0<k\leq m$,
$q^m-1=T(L_H+1)$.
Optimal Not optimal family size Inequivalent [20]
$(q^m-1, q^k, nM(\omega-1), l-n, q^{m-k}-1)$ $m\ge1, 0<k\leq m$,
$l|(q-1)$, $gcd(l, m)=1$,
$0<n\leq\lceil\frac{l}{2}\rceil$, $\omega>2l$,
$M=\lceil\frac{q^m-1}{l\omega}\rceil$.
Optimal Not optimal family size Inequivalent Cor.2
$(\frac{q^m-1}{l}, q^k, T, L_H, \frac{q^{m-k}-1}{l})$ $m\ge1, 0<k\leq m$,
$l|(q-1), gcd(l, m)=1$,
$q^m-1=T(L_H+1)$.
Optimal Not optimal family size Equivalent [20]
$(\frac{q^m-1}{l}, q^k, \frac{q^m-1}{T}, \frac{T}{d'}-1, \frac{q^{m-k}-1}{l})$ $m\ge1, 0<k\leq m$,
$l|(q-1)$, $gcd(l, m)=1$,
$T\mid q^m-1$, $T\nmid l$,
$gcd(T, l)=d'$.
Optimal Not optimal family size Equivalent [19]
$(\frac{q-1}{l}, q, \frac{q^m-1}{\omega}, \omega-1, m-1)$ $\omega|\frac{q-1}{l}$, $\omega\ne 1$,
$1\leq m<min\left\{i:i|\frac{q-1}{l}\right\}$.
Not Optimal optimal family size Inequivalent [7]
$\big(e'\frac{(q^m-1)}{l}, \frac{e'}{l}+1, nM(\omega-1), \frac{e'}{l}-n, e'q^k\big)$ $1\leq k\leq m-1, l|(q-1)$,
$l\ge2$, $e'=q^{m-k}-1$,
$0<n\leq\lceil\frac{e'}{2l}\rceil$, $\omega>\frac{2e'}{l}$,
$M=\lceil\frac{q^m-1}{\omega}\rceil$.
Optimal Not optimal family size Inequivalent Cor.3
$p$ is a prime, $q$ is a prime power and $lpf(y)$ denotes the least prime factor of an integer $y>1$.
Parameters
$(N, q, l, L_H, H_m)$
Constraints According to the bound(3) According to the bound(4) Cyclical equivalence Ref.
$(TN, q, Ml, \omega-1, TH_m)$ $M=\lceil \frac{N}{\omega}\rceil$, $gcd(l, N)=1$,
$T=\lambda\omega+1$, $\lambda\ge1, T < lN.$
Optimal Not optimal family size Inequivalent [9]
$(TN, q, M, \omega-1, TH_a)$ $M\omega=N, T\ge2$,
$gcd(s, N)=1.$
Optimal Not optimal family size Inequivalent [10]
$(lN, q, M, \omega l-1, lH_m)$ $M=\lceil \frac{N}{\omega}\rceil, gcd(l, N)=1.$ Optimal Not optimal family size Inequivalent [12]
$(lN, q$, $M\left[\omega-(x-1)(l-1)\right]$, $l-1$, $lH_m)$ $x\ne1, 0<x<\frac{\omega}{l}-1$,
$M=\lceil \frac{N}{\omega}\rceil, \omega>2l$,
$xl-x<r<\omega.$
Optimal Not optimal family size Inequivalent [6]
$(lN, q, nM(\omega-1), l-n, {lH}_m)$ $0<n\leq\lceil\frac{l}{2}\rceil, l>2$,
$\omega>2l, M=\lceil\frac{N}{\omega}\rceil$.
Optimal Not optimal family size Inequivalent Thm.1
$(lN, q, Ml+nM(\omega-{xl}+x-1), l-n, {lH}_m)$ $0<n\leq\lceil\frac{l}{2}\rceil, n\ne1$,
$l>2, \omega>2l, M=\lceil\frac{N}{\omega}\rceil$,
$0<x<\frac{\omega-1}{l-1}, x\ne1$.
Optimal Not optimal family size Inequivalent Thm.3
$(lN, q, M\omega, l-2, lH_m)$ $x=1, n=1, l>2$,
$\omega>2l, M=\lceil\frac{N}{\omega}\rceil$.
Optimal Not optimal family size Inequivalent Thm.3
$(s(q^m-1), q, l, L_H, s(q^{m-1}-1))$ $m\ge1, q^m-1=(L_H+1)l$,
$gcd(s, q^m-1)=1, s\leq l$.
Optimal Not optimal family size Equivalent [8]
$(p^2(q-1), pq, pq, min\left\{p^2-1, q-2\right\}, p)$ $gcd(p, q-1)=1, 2p\leq q-1.$ Optimal Not optimal family size Inequivalent [1]
$(p^2(p^2-1), p^2, p, p^2-2, p(p-1))$ $gcd(p^2, p^2-1)=1.$ Optimal Not optimal family size Inequivalent [21]
$\big(q^k(q^m-1), q^k, nM(\omega-1), q^k-n, q^m\big)$ $1\leq k\leq m$, $0<n\leq\lceil\frac{q^k}{2}\rceil$,
$\omega>2q^k$, $M=\lceil\frac{q^m-1}{\omega}\rceil$.
Optimal Not optimal family size Inequivalent Cor.1
$(q^m-1, q^k, Tq^k, L_H, q^{m-k})$ $m\ge1$, $0<k\leq m$,
$q^m-1=T(L_H+1)$.
Optimal Not optimal family size Inequivalent [20]
$(q^m-1, q^k, nM(\omega-1), l-n, q^{m-k}-1)$ $m\ge1, 0<k\leq m$,
$l|(q-1)$, $gcd(l, m)=1$,
$0<n\leq\lceil\frac{l}{2}\rceil$, $\omega>2l$,
$M=\lceil\frac{q^m-1}{l\omega}\rceil$.
Optimal Not optimal family size Inequivalent Cor.2
$(\frac{q^m-1}{l}, q^k, T, L_H, \frac{q^{m-k}-1}{l})$ $m\ge1, 0<k\leq m$,
$l|(q-1), gcd(l, m)=1$,
$q^m-1=T(L_H+1)$.
Optimal Not optimal family size Equivalent [20]
$(\frac{q^m-1}{l}, q^k, \frac{q^m-1}{T}, \frac{T}{d'}-1, \frac{q^{m-k}-1}{l})$ $m\ge1, 0<k\leq m$,
$l|(q-1)$, $gcd(l, m)=1$,
$T\mid q^m-1$, $T\nmid l$,
$gcd(T, l)=d'$.
Optimal Not optimal family size Equivalent [19]
$(\frac{q-1}{l}, q, \frac{q^m-1}{\omega}, \omega-1, m-1)$ $\omega|\frac{q-1}{l}$, $\omega\ne 1$,
$1\leq m<min\left\{i:i|\frac{q-1}{l}\right\}$.
Not Optimal optimal family size Inequivalent [7]
$\big(e'\frac{(q^m-1)}{l}, \frac{e'}{l}+1, nM(\omega-1), \frac{e'}{l}-n, e'q^k\big)$ $1\leq k\leq m-1, l|(q-1)$,
$l\ge2$, $e'=q^{m-k}-1$,
$0<n\leq\lceil\frac{e'}{2l}\rceil$, $\omega>\frac{2e'}{l}$,
$M=\lceil\frac{q^m-1}{\omega}\rceil$.
Optimal Not optimal family size Inequivalent Cor.3
$p$ is a prime, $q$ is a prime power and $lpf(y)$ denotes the least prime factor of an integer $y>1$.
[1]

Limengnan Zhou, Daiyuan Peng, Hongyu Han, Hongbin Liang, Zheng Ma. Construction of optimal low-hit-zone frequency hopping sequence sets under periodic partial Hamming correlation. Advances in Mathematics of Communications, 2018, 12 (1) : 67-79. doi: 10.3934/amc.2018004

[2]

Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequency-hopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 55-62. doi: 10.3934/amc.2015.9.55

[3]

Hongyu Han, Sheng Zhang. New classes of strictly optimal low hit zone frequency hopping sequence sets. Advances in Mathematics of Communications, 2020, 14 (4) : 579-589. doi: 10.3934/amc.2020031

[4]

Wenjuan Yin, Can Xiang, Fang-Wei Fu. Two constructions of low-hit-zone frequency-hopping sequence sets. Advances in Mathematics of Communications, 2022, 16 (2) : 249-267. doi: 10.3934/amc.2020110

[5]

Xing Liu, Daiyuan Peng. Frequency hopping sequences with optimal aperiodic Hamming correlation by interleaving techniques. Advances in Mathematics of Communications, 2017, 11 (1) : 151-159. doi: 10.3934/amc.2017009

[6]

Xianhua Niu, Daiyuan Peng, Zhengchun Zhou. New classes of optimal frequency hopping sequences with low hit zone. Advances in Mathematics of Communications, 2013, 7 (3) : 293-310. doi: 10.3934/amc.2013.7.293

[7]

Xing Liu, Daiyuan Peng. Sets of frequency hopping sequences under aperiodic Hamming correlation: Upper bound and optimal constructions. Advances in Mathematics of Communications, 2014, 8 (3) : 359-373. doi: 10.3934/amc.2014.8.359

[8]

Jingjun Bao. New families of strictly optimal frequency hopping sequence sets. Advances in Mathematics of Communications, 2018, 12 (2) : 387-413. doi: 10.3934/amc.2018024

[9]

Xianhong Xie, Yi Ouyang, Honggang Hu, Ming Mao. Construction of three classes of strictly optimal frequency-hopping sequence sets. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022024

[10]

Hua Liang, Wenbing Chen, Jinquan Luo, Yuansheng Tang. A new nonbinary sequence family with low correlation and large size. Advances in Mathematics of Communications, 2017, 11 (4) : 671-691. doi: 10.3934/amc.2017049

[11]

Wenli Ren, Feng Wang. A new class of optimal wide-gap one-coincidence frequency-hopping sequence sets. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020131

[12]

Zhenyu Zhang, Lijia Ge, Fanxin Zeng, Guixin Xuan. Zero correlation zone sequence set with inter-group orthogonal and inter-subgroup complementary properties. Advances in Mathematics of Communications, 2015, 9 (1) : 9-21. doi: 10.3934/amc.2015.9.9

[13]

Ming Su, Arne Winterhof. Hamming correlation of higher order. Advances in Mathematics of Communications, 2018, 12 (3) : 505-513. doi: 10.3934/amc.2018029

[14]

Nian Li, Xiaohu Tang, Tor Helleseth. A class of quaternary sequences with low correlation. Advances in Mathematics of Communications, 2015, 9 (2) : 199-210. doi: 10.3934/amc.2015.9.199

[15]

Fanxin Zeng, Xiaoping Zeng, Zhenyu Zhang, Guixin Xuan. Quaternary periodic complementary/Z-complementary sequence sets based on interleaving technique and Gray mapping. Advances in Mathematics of Communications, 2012, 6 (2) : 237-247. doi: 10.3934/amc.2012.6.237

[16]

Fang Liu, Daiyuan Peng, Zhengchun Zhou, Xiaohu Tang. New constructions of optimal frequency hopping sequences with new parameters. Advances in Mathematics of Communications, 2013, 7 (1) : 91-101. doi: 10.3934/amc.2013.7.91

[17]

Shanding Xu, Xiwang Cao, Jiafu Mi, Chunming Tang. More cyclotomic constructions of optimal frequency-hopping sequences. Advances in Mathematics of Communications, 2019, 13 (3) : 373-391. doi: 10.3934/amc.2019024

[18]

Wei-Wen Hu. Integer-valued Alexis sequences with large zero correlation zone. Advances in Mathematics of Communications, 2017, 11 (3) : 445-452. doi: 10.3934/amc.2017037

[19]

Zilong Wang, Guang Gong. Correlation of binary sequence families derived from the multiplicative characters of finite fields. Advances in Mathematics of Communications, 2013, 7 (4) : 475-484. doi: 10.3934/amc.2013.7.475

[20]

Ferruh Özbudak, Eda Tekin. Correlation distribution of a sequence family generalizing some sequences of Trachtenberg. Advances in Mathematics of Communications, 2021, 15 (4) : 647-662. doi: 10.3934/amc.2020087

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (271)
  • HTML views (190)
  • Cited by (0)

Other articles
by authors

[Back to Top]