[1]
|
A. Allahmadi, A. Alkenani, R. Hijazi, N. Muthana, F. Özbudak and P. Solé, New constructions
of entanglement-assisted quantum codes, Cryptography and Communications.
|
[2]
|
A. Ashikhmin, S. Litsyn and M. Tsfasman, Asymptotically good quantum codes, Physical Review A, 63 (2001), 032311.
doi: 10.1103/PhysRevA.63.032311.
|
[3]
|
D. Bartoli, M. Montanucci and G. Zini, On certain self-orthogonal AG codes with applications to quantum error- correcting codes, Des. Codes Cryptogr., 89 (2021), 1221-1239.
doi: 10.1007/s10623-021-00870-y.
|
[4]
|
T. Brun, I. Devetak and M.-H. Hsieh, Correcting quantum errors with entanglement, Science, 314 (2006), 436-439.
doi: 10.1126/science.1131563.
|
[5]
|
A. Calderbank, E. Rains, P. Shor and N. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.
doi: 10.1109/18.681315.
|
[6]
|
N. J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly, 54 (1947), 589-592.
doi: 10.2307/2304500.
|
[7]
|
C. Galindo, F. Hernando, R. Matsumoto and D. Ruano, Entanglement-assisted quantum error-correcting codes over arbitrary finite fields, Quantum Inf. Process., 18 (2019), Paper No. 116, 18 pp.
doi: 10.1007/s11128-019-2234-5.
|
[8]
|
D. Gottesman, Class of quantum error-correcting codes saturating the quantum Hamming bound, Phys. Rev. A, 54 (1996), 1862-1868.
doi: 10.1103/PhysRevA.54.1862.
|
[9]
|
G. G. L. Guardia, Quantum Error Correction, Quantum Science and Technology. Springer, Cham, 2020.
doi: 10.1007/978-3-030-48551-1.
|
[10]
|
A. Guo, S. Kopparty and M. Sudan, New affine-invariant codes from lifting, Proceedings of the 2013 ACM Conference on Innovations in Theoretical Computer Science, ACM Press, (2013), 529–540.
|
[11]
|
F. Hernando, G. McGuire, F. Monserrat and J. J. Moyano-Fernández, Quantum codes from a new construction of self-orthogonal algebraic geometry codes, Quantum Inf. Process., 19 (2020), Paper No. 117, 25 pp.
doi: 10.1007/s11128-020-2616-8.
|
[12]
|
T. Høholdt, J. H. van Lint and R. Pellikaan, Algebraic geometry codes, Handbook of Coding Theory, North-Holland, Amsterdam, (1998), 871–961.
|
[13]
|
A. Ketkar, A. Klappenecker, S. Kumar and P. Sarvepalli, Nonbinary stabilizer codes over finite fields, IEEE Trans. Inform. Theory, 52 (2006), 4892-4914.
doi: 10.1109/TIT.2006.883612.
|
[14]
|
J.-L. Kim and G. L. Matthews, Quantum error-correcting codes from algebraic curves, Advances in Algebraic Geometry Codes, Ser. Coding Theory Cryptol., World Sci. Publ., Hackensack, 5 (2008), 419–444.
doi: 10.1142/9789812794017_0012.
|
[15]
|
R. Lidl and H. Niederreiter, Finite Fields, 2$^{nd}$ edition, Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.
|
[16]
|
E. Lucas, Théorie des Nombres, Gauthier-Villars et fils, Paris, 1891.
|
[17]
|
R. Matsumoto, Improvement of Ashikhmin-Litsyn-Tsfasman bound for quantum codes, IEEE Trans. Inform. Theory, 48 (2002), 2122-2124.
doi: 10.1109/TIT.2002.1013156.
|
[18]
|
C. Munuera, W. Tenório and F. Torres, Quantum error-correcting codes from algebraic geometry codes of Castle type, Quantum Inf. Process., 15 (2016), 4071-4088.
doi: 10.1007/s11128-016-1378-9.
|
[19]
|
F. R. F. Pereira, R. Pellikaan, G. G. L. Guardia and F. M. de Assis, Application of complementary dual AG codes to entanglement-assisted quantum codes, 2019 IEEE International Symposium on Information Theory (ISIT), (2019), 2559–2563.
|
[20]
|
F. R. F. Pereira, R. Pellikaan, G. G. L. Guardia and F. M. de Assis, Entanglement-assisted quantum codes from algebraic geometry codes, IEEE Trans. Inform. Theory, 67 (2021), 7110-7120.
doi: 10.1109/TIT.2021.3113367.
|
[21]
|
P. K. Sarvepalli and A. Klappenecker, Nonbinary quantum codes from Hermitian curves, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Springer Berlin Heidelberg, 3857 (2006), 136–143.
doi: 10.1007/11617983_13.
|
[22]
|
H. Stichtenoth, Algebraic Function Fields and Codes, 2$^{nd}$ edition, Graduate Texts in Mathematics, Springer, 2009.
|
[23]
|
H. Tiersma, Remarks on codes from Hermitian curves, IEEE Trans. Inform. Theory, 33 (1987), 605-609.
doi: 10.1109/TIT.1987.1057327.
|
[24]
|
K. Yang and P. V. Kumar, On the true minimum distance of Hermitian codes, Coding Theory and Algebraic Geometry Lecture Notes in Mathematics, 1518 (1992), 99-107.
doi: 10.1007/BFb0087995.
|