doi: 10.3934/amc.2022004
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Additive polycyclic codes over $ \mathbb{F}_{4} $ induced by binary vectors and some optimal codes

1. 

Department of Mathematics, Bu Ali Sina University, Hamedan, Iran

2. 

Department of Mathematics & Statistics, American University of Sharjah, Sharjah, UAE

3. 

Department of Mathematics & Statistics, Kenyon College, Gambier, OH USA

4. 

Department of Mathematics, University of Michigan, Ann Arbor, MI, USA

*Corresponding author: Nuh Aydin

Received  August 2021 Revised  November 2021 Early access February 2022

In this paper, we study the structure and properties of additive right and left polycyclic codes induced by a binary vector $ a $ in $ \mathbb{F}_{2}^{n}. $ We find the generator polynomials and the cardinality of these codes. We also study different duals for these codes. In particular, we show that if $ C $ is a right polycyclic code induced by a vector $ a\in \mathbb{F}_{2}^{n} $, then the Hermitian dual of $ C $ is a sequential code induced by $ a. $ As an application of these codes, we present examples of additive right polycyclic codes over $ \mathbb{F}_{4} $ with more codewords than comparable optimal linear codes as well as optimal binary linear codes and optimal quantum codes obtained from additive right polycyclic codes over $ \mathbb{F}_{4}. $

Citation: Arezoo Soufi Karbaski, Taher Abualrub, Nuh Aydin, Peihan Liu. Additive polycyclic codes over $ \mathbb{F}_{4} $ induced by binary vectors and some optimal codes. Advances in Mathematics of Communications, doi: 10.3934/amc.2022004
References:
[1]

T. AbualrubN. Aydin and I. Aydogdu, Optimal binary codes derived from $\mathbb{F}_{2}\mathbb{F}_{4}$-additive cyclic codes, J. Appl. Math. Comput., 64 (2020), 71-87.  doi: 10.1007/s12190-020-01344-5.

[2]

A. AlahmadiS. T. DoughertyA. Leroy and P. Sol$\acute{e }$, On the duality and direction of polycyclic codes, Adv. Math. Commun., 10 (2016), 923-929.  doi: 10.3934/amc.2016049.

[3]

A. R. CalderbankE. M. RainsP. W. Shor and N. J. A. Sloane, Quantum error correction via codes ${\mathbb{F}_{4}}$, IEEE Trans. Inf. Theory, 44 (1998), 1369-1387.  doi: 10.1109/18.681315.

[4]

M. Grassl, Bounds on the minimum distance of linear codes, Available from: http://www.codetables.de/.

[5]

W. C. Huffman, Additive codes over $\mathbb{F}_{4}$, Adv. Math. Commun., 2 (2008), 309-343.  doi: 10.3934/amc.2008.2.309.

[6]

M. Matsuoka, Polynomial realization of sequential codes over finite fields, SUT J. Math., 48 (2012), 47-53. 

[7]

S. R. L$\acute{o}$pez-PermouthB. R. Parra-Avila and S. Szabo, Dual generalizations of the concept of cyclicity of codes, Adv. Math. Commun., 3 (2009), 227-234.  doi: 10.3934/amc.2009.3.227.

show all references

References:
[1]

T. AbualrubN. Aydin and I. Aydogdu, Optimal binary codes derived from $\mathbb{F}_{2}\mathbb{F}_{4}$-additive cyclic codes, J. Appl. Math. Comput., 64 (2020), 71-87.  doi: 10.1007/s12190-020-01344-5.

[2]

A. AlahmadiS. T. DoughertyA. Leroy and P. Sol$\acute{e }$, On the duality and direction of polycyclic codes, Adv. Math. Commun., 10 (2016), 923-929.  doi: 10.3934/amc.2016049.

[3]

A. R. CalderbankE. M. RainsP. W. Shor and N. J. A. Sloane, Quantum error correction via codes ${\mathbb{F}_{4}}$, IEEE Trans. Inf. Theory, 44 (1998), 1369-1387.  doi: 10.1109/18.681315.

[4]

M. Grassl, Bounds on the minimum distance of linear codes, Available from: http://www.codetables.de/.

[5]

W. C. Huffman, Additive codes over $\mathbb{F}_{4}$, Adv. Math. Commun., 2 (2008), 309-343.  doi: 10.3934/amc.2008.2.309.

[6]

M. Matsuoka, Polynomial realization of sequential codes over finite fields, SUT J. Math., 48 (2012), 47-53. 

[7]

S. R. L$\acute{o}$pez-PermouthB. R. Parra-Avila and S. Szabo, Dual generalizations of the concept of cyclicity of codes, Adv. Math. Commun., 3 (2009), 227-234.  doi: 10.3934/amc.2009.3.227.

Table 1.  Additive codes $ [n, k, d]_4 $ v.s. BKLC $ [n, k, d]_4 $ with smaller dimension
$ [n, \frac{2k+1}{2}, d]_4 $ $ [n, k, d]_4 $ $ [n, k+1, d-1]_4 $ $ \langle \alpha g_1 +g_2, b\rangle $ Multinomial
$ [ 7, 9/2, 3]_4 $ $ [ 7, 4, 3 ]_4 $ $ [ 7, 5, 2 ]_4 $ $ \langle\alpha (x^2 + x + 1)+x, x^3 + x^2 + 1\rangle $ $ x^7 + x^6 + x^5 + x^3 + 1 $
$ [7, 7/2, 4]_4 $ $ [7, 3, 4]_4 $ $ [7, 4, 3]_4 $ $ \langle\alpha (x + 1)+ x^4 + x^3 + x^2 + x, x^6 + \\x^5 + x^4 + x^3 + x^2 + x + 1\rangle $ $ x^7 + 1 $
$ [22, 37/2, 3]_4 $ $ [22, 18, 3]_4 $ $ [22, 19, 2]_4 $ $ \langle\alpha (x + 1)+ x^3 + x, x^6 + x^4 + x^3 + \\x + 1\rangle $ $ x^{22} + x^{19} + x^{15} + x^{14} + x^{13} + x^8 + \\x^7 + x^6 + x^4 + x^2 + x + 1 $
$ [23, 39/2, 3]_4 $ $ [23, 19, 3]_4 $ $ [23, 20, 2]_4 $ $ \langle\alpha (x + 1)+ x^4 + x^2, x^6 + x^5 + 1\rangle $ $ x^{23} + x^{22} + x^{21} + x^{15} + x^{13} + x^{11} + \\x^{10} + x^9 + x^8 + x^7 + x^3 + x^2+ x + 1 $
$ [24, 41/2 , 3]_4 $ $ [24, 20, 3]_4 $ $ [24, 21, 2]_4 $ $ \langle\alpha (x^2 + x + 1)+ x^2 + x, x^5 + x^4 + \\x^3 + x + 1\rangle $ $ x^{24} + x^{21} + x^{20} + x^{19} + x^{18} + x^{16} +\\ x^{14} + x^8 + x^5 + x^4 + x^3 + x^2 1, $
$ [25, 43/2, 4]_4 $ $ [25, 21, 3]_4 $ $ [25, 22, 2]_4 $ $ \langle\alpha (x + 1)+x^4 + x^2, x^6 + x^5 + 1\rangle $ $ x^{25} + x^{24} + x^{22} + x^{21} + x^{19} + x^{18} + \\x^{15} + x^{13} + x^{12} + x^{11} + x^{10} +x^9 + \\x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + 1 $
$ [26, 45/2, 3]_4 $ $ [26, 22, 3]_4 $ $ [26, 23, 2]_4 $ $ \langle\alpha (x + 1)+x^4 + x^3 + x, x^6 + x^5 + \\x^3 + x^2 + 1\rangle $ $ x^{26} + x^{24} + x^{21} + x^{16} + x^{15} + x^{13} + \\x^{12} + x^{11} + x^{10} + x^9 + x^7 +x^3 + \\x^2 + 1 $
$ [27, 47/2, 3]_4 $ $ [27, 23, 3]_4 $ $ [27, 24, 2]_4 $ $ \langle\alpha (x^2 + x + 1)+ x^2 + x, x^5 + x^4 + \\x^3 + x + 1\rangle $ $ x^{27} + x^{26} + x^{23} + x^{21} + x^{19} + x^{18} + \\x^{17} + x^{14} + x^{13} + x^{11} + x^{10} +x^7 + \\x^3 + x + 1 $
$ [27, 47/2, 3]_4 $ $ [27, 23, 3]_4 $ $ [27, 24, 2]_4 $ $ \langle\alpha (x^2 + x + 1)+ x^2 + x, x^5 + x^4 + \\x^3 + x + 1\rangle $ $ x^{27} + x^{26} + x^{23} + x^{21} + x^{19} + x^{18} + \\x^{17} + x^{14} + x^{13} + x^{11} + x^{10} +x^7 + \\x^3 + x + 1 $
$ [28, 49/2, 3, ]_4 $ $ [28, 24, 3]_4 $ $ [28, 25, 2]_4 $ $ \langle\alpha (x^2 + x + 1)+ x^3 + x^2 + x, x^5 + \\x^3 + x^2 + x + 1\rangle $ $ x^{28} + x^{27} + x^{24} + x^{23} + x^{22} + x^{20} + \\x^{17} + x^{16} + x^{15} + x^{14} + x^{13} +x^{11} + \\x^{10} + x^8 + x^7 + x^5 + x^3 + x + 1 $
$ [29, 51/2, 3]_4 $ $ [29, 25, 3]_4 $ $ [29, 26, 2]_4 $ $ \langle\alpha (x + 1)+ x^2 + x + 1, x^6 + x^5 + \\x^4 + x + 1\rangle $ $ x^{29} + x^{25} + x^{22} + x^{21} + x^{19} + x^{15} + \\x^{14} + x^{13} + x^{11} + x^{10} + x^6 +x^3 + \\x + 1 $
$ [30, 53/2, 3]_4 $ $ [30, 26, 3]_4 $ $ [30, 27, 2]_4 $ $ \langle\alpha (x + 1)+ x^3 + x^2 + 1, x^6 + x^5 + \\x^3 + x^2 + 1\rangle $ $ x^{30} + x^{27} + x^{26} + x^{25} + x^{24} + x^{20} + \\x^{19} + x^{18} + x^{16} + x^{11} + x^{10} +x^9 + \\x^8 + x^7 + x^2 + 1 $
$ [31, 55/2, 3]_4 $ $ [31, 27, 3]_4 $ $ [31, 28, 2]_4 $ $ \langle\alpha ( x + 1)+ x^4 + x + 1, x^6 + x^5 + \\x^3 + x^2 + 1\rangle $ $ x^{31} + x^{25} + x^{23} + x^{22} + x^{20} + x^{18} + \\x^{17} + x^{16} + x^{15} + x^{14} + x^{13} +x^{12} + \\x^{10} + x^9 + x^8 + x^7 + x^6 + x^4 + x^3 +1 $
$ [n, \frac{2k+1}{2}, d]_4 $ $ [n, k, d]_4 $ $ [n, k+1, d-1]_4 $ $ \langle \alpha g_1 +g_2, b\rangle $ Multinomial
$ [ 7, 9/2, 3]_4 $ $ [ 7, 4, 3 ]_4 $ $ [ 7, 5, 2 ]_4 $ $ \langle\alpha (x^2 + x + 1)+x, x^3 + x^2 + 1\rangle $ $ x^7 + x^6 + x^5 + x^3 + 1 $
$ [7, 7/2, 4]_4 $ $ [7, 3, 4]_4 $ $ [7, 4, 3]_4 $ $ \langle\alpha (x + 1)+ x^4 + x^3 + x^2 + x, x^6 + \\x^5 + x^4 + x^3 + x^2 + x + 1\rangle $ $ x^7 + 1 $
$ [22, 37/2, 3]_4 $ $ [22, 18, 3]_4 $ $ [22, 19, 2]_4 $ $ \langle\alpha (x + 1)+ x^3 + x, x^6 + x^4 + x^3 + \\x + 1\rangle $ $ x^{22} + x^{19} + x^{15} + x^{14} + x^{13} + x^8 + \\x^7 + x^6 + x^4 + x^2 + x + 1 $
$ [23, 39/2, 3]_4 $ $ [23, 19, 3]_4 $ $ [23, 20, 2]_4 $ $ \langle\alpha (x + 1)+ x^4 + x^2, x^6 + x^5 + 1\rangle $ $ x^{23} + x^{22} + x^{21} + x^{15} + x^{13} + x^{11} + \\x^{10} + x^9 + x^8 + x^7 + x^3 + x^2+ x + 1 $
$ [24, 41/2 , 3]_4 $ $ [24, 20, 3]_4 $ $ [24, 21, 2]_4 $ $ \langle\alpha (x^2 + x + 1)+ x^2 + x, x^5 + x^4 + \\x^3 + x + 1\rangle $ $ x^{24} + x^{21} + x^{20} + x^{19} + x^{18} + x^{16} +\\ x^{14} + x^8 + x^5 + x^4 + x^3 + x^2 1, $
$ [25, 43/2, 4]_4 $ $ [25, 21, 3]_4 $ $ [25, 22, 2]_4 $ $ \langle\alpha (x + 1)+x^4 + x^2, x^6 + x^5 + 1\rangle $ $ x^{25} + x^{24} + x^{22} + x^{21} + x^{19} + x^{18} + \\x^{15} + x^{13} + x^{12} + x^{11} + x^{10} +x^9 + \\x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + 1 $
$ [26, 45/2, 3]_4 $ $ [26, 22, 3]_4 $ $ [26, 23, 2]_4 $ $ \langle\alpha (x + 1)+x^4 + x^3 + x, x^6 + x^5 + \\x^3 + x^2 + 1\rangle $ $ x^{26} + x^{24} + x^{21} + x^{16} + x^{15} + x^{13} + \\x^{12} + x^{11} + x^{10} + x^9 + x^7 +x^3 + \\x^2 + 1 $
$ [27, 47/2, 3]_4 $ $ [27, 23, 3]_4 $ $ [27, 24, 2]_4 $ $ \langle\alpha (x^2 + x + 1)+ x^2 + x, x^5 + x^4 + \\x^3 + x + 1\rangle $ $ x^{27} + x^{26} + x^{23} + x^{21} + x^{19} + x^{18} + \\x^{17} + x^{14} + x^{13} + x^{11} + x^{10} +x^7 + \\x^3 + x + 1 $
$ [27, 47/2, 3]_4 $ $ [27, 23, 3]_4 $ $ [27, 24, 2]_4 $ $ \langle\alpha (x^2 + x + 1)+ x^2 + x, x^5 + x^4 + \\x^3 + x + 1\rangle $ $ x^{27} + x^{26} + x^{23} + x^{21} + x^{19} + x^{18} + \\x^{17} + x^{14} + x^{13} + x^{11} + x^{10} +x^7 + \\x^3 + x + 1 $
$ [28, 49/2, 3, ]_4 $ $ [28, 24, 3]_4 $ $ [28, 25, 2]_4 $ $ \langle\alpha (x^2 + x + 1)+ x^3 + x^2 + x, x^5 + \\x^3 + x^2 + x + 1\rangle $ $ x^{28} + x^{27} + x^{24} + x^{23} + x^{22} + x^{20} + \\x^{17} + x^{16} + x^{15} + x^{14} + x^{13} +x^{11} + \\x^{10} + x^8 + x^7 + x^5 + x^3 + x + 1 $
$ [29, 51/2, 3]_4 $ $ [29, 25, 3]_4 $ $ [29, 26, 2]_4 $ $ \langle\alpha (x + 1)+ x^2 + x + 1, x^6 + x^5 + \\x^4 + x + 1\rangle $ $ x^{29} + x^{25} + x^{22} + x^{21} + x^{19} + x^{15} + \\x^{14} + x^{13} + x^{11} + x^{10} + x^6 +x^3 + \\x + 1 $
$ [30, 53/2, 3]_4 $ $ [30, 26, 3]_4 $ $ [30, 27, 2]_4 $ $ \langle\alpha (x + 1)+ x^3 + x^2 + 1, x^6 + x^5 + \\x^3 + x^2 + 1\rangle $ $ x^{30} + x^{27} + x^{26} + x^{25} + x^{24} + x^{20} + \\x^{19} + x^{18} + x^{16} + x^{11} + x^{10} +x^9 + \\x^8 + x^7 + x^2 + 1 $
$ [31, 55/2, 3]_4 $ $ [31, 27, 3]_4 $ $ [31, 28, 2]_4 $ $ \langle\alpha ( x + 1)+ x^4 + x + 1, x^6 + x^5 + \\x^3 + x^2 + 1\rangle $ $ x^{31} + x^{25} + x^{23} + x^{22} + x^{20} + x^{18} + \\x^{17} + x^{16} + x^{15} + x^{14} + x^{13} +x^{12} + \\x^{10} + x^9 + x^8 + x^7 + x^6 + x^4 + x^3 +1 $
Table 2.  Optimal binary linear codes $ [n, k, d]_2 $ obtained from quaternary additive codes based on $ W $, $ T $, and $ L $
$ [n, k, d]_2 $ Map $ \langle \alpha g_1 +g_2, b\rangle $ Multinomial
$ [ 7, 2, 4]_2^{*\circ} $ L $ \langle\alpha (x^5 + x^4 + x + 1) + 1, x^2 + x + 1 \rangle $ $ x^7 + x^4 + x^3 + 1 $
$ [ 10, 4, 4]_2 $ L $ \langle\alpha (x + 1)+x + 1, x^6 + x^5 + x^4 + \\x + 1\rangle $ $ x^{10} + x^9 + x^8 + x^6 + x + 1 $
$ [ 12, 5, 4]_2 $ L $ \langle\alpha (x^2 + x + 1)+x^2 + x + 1, x^7 + \\x^3 + x^2 + x + 1\rangle $ $ x^{12} + x^6 + x^5 + x^4 + 1 $
$ [ 16, 9, 4]_2^* $ T $ \langle\alpha (x^7 + x^3 + x^2 + x + 1)+x^4 + \\x^3 + x^2 + x + 1, x^9 + x + 1 \rangle $ $ x^{16} + x^{12} + x^{11} + x^{10} + x^9 + x^8 + \\x^7 + x^4 + 1 $
$ [ 17, 9, 5]_2 $ T $ \langle\alpha (x^8 + x^5 + x^4 + x^3 + 1)+x^7 + \\x^6 + x^4 + x^3 + x, x^9 + x^8 + x^6 + \\x^5 + x^4 + x^3 + x^2 + x + 1\rangle $ $ x^{17} + x^{16} + x^{13} + x^{12} + x^{11} + x^{10} + \\x^9 + x^8 + x^7 + x^4 + x^2 + x + 1 $
$ [ 20, 11, 5]_2 $ W $ \langle\alpha (x+1)+x^6 + x^4 + x^2 + x, x^8 + \\x^6 + x^5 + x^4 + x^2 + x + 1\rangle $ $ x^{10} + x^7 + x^5 + x^3 + x + 1 $
$ [ 26, 17, 4]_2 $ W $ \langle\alpha (x+1)+x^4 + x^3 + x^2, x^8 + x^5 + \\x^3 + x + 1\rangle $ $ x^{13} + x^{10} + x^6 + x^3 + x + 1 $
$ [ 35, 24, 5]_2^* $ T $ \langle\alpha (x^{11} + x^9 + x^8 + x^6 + x^4 + x^3 + \\x^2 + x + 1)+x^{22} + x^{16} + x^{15} + x^{14} + \\x^{13} + x^{10} + x^9 + x^8 + x^7 + x^5 + x + \\1 , x^{24} + x^{21} + x^{19} + x^{16} + x^{13} + \\x^{12} + x^{10} + x^8 + x^7 + x^6 + x^2 + x +1\rangle $ $ x^{35} + x^{33} + x^{30} + x^{29} + x^{26} + x^{23} + \\x^{21} + x^{20} + x^{19} + x^{14} + x^{13} +x^{12} + \\x^{11} + x^9 + x^8 + x^7 + x^6 + x^4 + \\x^3 + x^2 + 1 $
$ [ 49, 39, 4]_2^* $ T $ \langle\alpha ( x^{10} + x^8 + x^6 + x^4 + x^2 + x + \\1)+x , x^5 + x^4 + x^3 + x^2 + 1 \rangle $ $ x^{49} + x^{46} + x^{45} + x^{44} + x^{40} + x^{39} + \\x^{38} + x^{36} + x^{35} + x^{31} + x^{30} + x^{29} + \\x^{28} + x^{27} + x^{24} + x^{23} + x^{20} + x^{19} + \\x^{17} + x^{15} + x^{12} + x^{11} + x^9 + x^8 + \\x^4 + x + 1 $
$ [ 62, 51, 4]_2 $ W $ \langle\alpha ( x + 1)+x^8 + x^4 + x + 1 , x^10 + \\x^9 + x^8 + x^4 + 1 \rangle $ $ x^{31} + x^{29} + x^{28} + x^{27} + x^{26} + x^{25} + \\x^{23} + x^{15} + x^{14} + x^{13} + x^{12} +x^9 + \\x^8 + x^7 + x^3 + x^2 + x + 1 $
$ [ 98, 86, 4]_2 $ W $ \langle\alpha (x^2+ x + 1)+x^8 + x^7 + x^6 + x^3 + \\1 , x^{10} + x^8 + x^6 + x^4 + x^2 + x + 1\rangle $ $ x^{49} + x^{48} + x^{46} + x^{45} + x^{43} + x^{39} + \\x^{36} + x^{31} + x^{27} + x^{25} + x^{24} +x^{22} + \\x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{14} + \\x^7 + x^6 + x^3 + x + 1 $
$ [n, k, d]_2 $ Map $ \langle \alpha g_1 +g_2, b\rangle $ Multinomial
$ [ 7, 2, 4]_2^{*\circ} $ L $ \langle\alpha (x^5 + x^4 + x + 1) + 1, x^2 + x + 1 \rangle $ $ x^7 + x^4 + x^3 + 1 $
$ [ 10, 4, 4]_2 $ L $ \langle\alpha (x + 1)+x + 1, x^6 + x^5 + x^4 + \\x + 1\rangle $ $ x^{10} + x^9 + x^8 + x^6 + x + 1 $
$ [ 12, 5, 4]_2 $ L $ \langle\alpha (x^2 + x + 1)+x^2 + x + 1, x^7 + \\x^3 + x^2 + x + 1\rangle $ $ x^{12} + x^6 + x^5 + x^4 + 1 $
$ [ 16, 9, 4]_2^* $ T $ \langle\alpha (x^7 + x^3 + x^2 + x + 1)+x^4 + \\x^3 + x^2 + x + 1, x^9 + x + 1 \rangle $ $ x^{16} + x^{12} + x^{11} + x^{10} + x^9 + x^8 + \\x^7 + x^4 + 1 $
$ [ 17, 9, 5]_2 $ T $ \langle\alpha (x^8 + x^5 + x^4 + x^3 + 1)+x^7 + \\x^6 + x^4 + x^3 + x, x^9 + x^8 + x^6 + \\x^5 + x^4 + x^3 + x^2 + x + 1\rangle $ $ x^{17} + x^{16} + x^{13} + x^{12} + x^{11} + x^{10} + \\x^9 + x^8 + x^7 + x^4 + x^2 + x + 1 $
$ [ 20, 11, 5]_2 $ W $ \langle\alpha (x+1)+x^6 + x^4 + x^2 + x, x^8 + \\x^6 + x^5 + x^4 + x^2 + x + 1\rangle $ $ x^{10} + x^7 + x^5 + x^3 + x + 1 $
$ [ 26, 17, 4]_2 $ W $ \langle\alpha (x+1)+x^4 + x^3 + x^2, x^8 + x^5 + \\x^3 + x + 1\rangle $ $ x^{13} + x^{10} + x^6 + x^3 + x + 1 $
$ [ 35, 24, 5]_2^* $ T $ \langle\alpha (x^{11} + x^9 + x^8 + x^6 + x^4 + x^3 + \\x^2 + x + 1)+x^{22} + x^{16} + x^{15} + x^{14} + \\x^{13} + x^{10} + x^9 + x^8 + x^7 + x^5 + x + \\1 , x^{24} + x^{21} + x^{19} + x^{16} + x^{13} + \\x^{12} + x^{10} + x^8 + x^7 + x^6 + x^2 + x +1\rangle $ $ x^{35} + x^{33} + x^{30} + x^{29} + x^{26} + x^{23} + \\x^{21} + x^{20} + x^{19} + x^{14} + x^{13} +x^{12} + \\x^{11} + x^9 + x^8 + x^7 + x^6 + x^4 + \\x^3 + x^2 + 1 $
$ [ 49, 39, 4]_2^* $ T $ \langle\alpha ( x^{10} + x^8 + x^6 + x^4 + x^2 + x + \\1)+x , x^5 + x^4 + x^3 + x^2 + 1 \rangle $ $ x^{49} + x^{46} + x^{45} + x^{44} + x^{40} + x^{39} + \\x^{38} + x^{36} + x^{35} + x^{31} + x^{30} + x^{29} + \\x^{28} + x^{27} + x^{24} + x^{23} + x^{20} + x^{19} + \\x^{17} + x^{15} + x^{12} + x^{11} + x^9 + x^8 + \\x^4 + x + 1 $
$ [ 62, 51, 4]_2 $ W $ \langle\alpha ( x + 1)+x^8 + x^4 + x + 1 , x^10 + \\x^9 + x^8 + x^4 + 1 \rangle $ $ x^{31} + x^{29} + x^{28} + x^{27} + x^{26} + x^{25} + \\x^{23} + x^{15} + x^{14} + x^{13} + x^{12} +x^9 + \\x^8 + x^7 + x^3 + x^2 + x + 1 $
$ [ 98, 86, 4]_2 $ W $ \langle\alpha (x^2+ x + 1)+x^8 + x^7 + x^6 + x^3 + \\1 , x^{10} + x^8 + x^6 + x^4 + x^2 + x + 1\rangle $ $ x^{49} + x^{48} + x^{46} + x^{45} + x^{43} + x^{39} + \\x^{36} + x^{31} + x^{27} + x^{25} + x^{24} +x^{22} + \\x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{14} + \\x^7 + x^6 + x^3 + x + 1 $
Table 3.  Optimal quantum codes $ [[n, k, d]]_4 $ from self-dual/self-orthogonal/dual-containing binary linear codes obtained from quaternary additive codes
$ [[n, k, d]]_4 $ Map $ \langle \alpha g_1 +g_2, b\rangle $ Multinomial
$ [[ 7, 1, 3]]_4 $ T $ \langle\alpha (x^3+x^2 + 1)+ x, x^4 + x^3 + x^2 + x + 1 \rangle $ $ x^7 + x^4 + x^3 + x + 1 $
$ [[ 10, 8, 2]]_4 $ T $ \langle\alpha (x + 1)+ 1, x^2 + x + 1\rangle $ $ x^{10} + x^9 + x^7 + x^5 + x^4 + x^2 + x + 1 $
$ [[ 15, 7, 3]]_4 $ T $ \langle\alpha (x^4 + x + 1)+ x^2 + x + 1, x^4 + x^3 + 1 \rangle $ $ x^{15} + x^{10} + x^9 + x^7 + x^6 + x^5 + \\x^3 + x^2 + 1 $
$ [[ 30, 26, 2]]_4 $ T $ \langle\alpha (x^2 + x + 1)+ x^8 + x^6 + 1, x^{12} + x^{11} + \\x^8 + x^7 + x^5 + x^4 + x^2 + x + 1 \rangle $ $ x^{30} + x^{29} + x^{27} + x^{25} + x^{24} + x^{23} + \\x^{22} + x^{21} + x^{20} + x^{17} + x^{13} + x^{11} + \\x^{10} + x^9 + x^6 + x^5 + x^2 + x + 1 $
$ [[ 35, 29, 2]]_4 $ L $ \langle\alpha ( x + 1)+ x + 1, x^3 + x + 1 \rangle $ $ x^{35} + x^{34} + x^{33} + x^{31} + x^{27} + x^{25} + \\x^{24} + x^{22} + x^{20} + x^{18} + x^{17} + x^{16} + \\x^{15} + x^{11} + x^5 + x^4 + x + 1 $
$ [[ 36, 30, 2]]_4 $ W $ \langle\alpha ( x + 1)+ 1, x^2 + x + 1 \rangle $ $ x^{18} + x^{16} + x^{13} + x^{11} + x^9 + x^8 + \\x^7 + x^4 + x^3 + 1 $
$ [[ 48, 42, 2]]_4 $ W $ \langle\alpha ( x + 1)+ 1, x^2 + x + 1 \rangle $ $ x^{24} + x^{22} + x^{16} + x^{15} + x^{14} + x^{13} + \\x^{11} + x^{10} + x^7 + x^6 + x^4 + 1 $
$ [[ 56, 50, 2]]_4 $ L $ \langle\alpha ( x + 1)+ 1, x^3 + x + 1 \rangle $ $ x^{56} + x^{51} + x^{49} + x^{48} + x^{47} + x^{41} + \\x^{38} + x^{36} + x^{31} + x^{30} + x^{29} + x^{28} + \\x^{26} + x^{18} + x^{16} + x^{15} + x^{14} + x^{12} + \\x^{10} + x^9 + x^5 + x^2 + x + 1 $
$ [[ 72, 66, 2]]_4 $ W $ \langle\alpha ( x + 1)+ 1, x^2 + x + 1 \rangle $ $ x^{36} + x^{35} + x^{32} + x^{31} + x^{30} + x^{29} + \\x^{26} + x^{22} + x^{21} + x^{20} + x^{18} +x^{16} + \\x^{13} + x^{10} + x^9 + x^2 + x + 1 $
$ [[ 84, 76, 2]]_4 $ W $ \langle\alpha ( x + 1)+ 1, x^3 + x + 1 \rangle $ $ x^{42} + x^{41} + x^{40} + x^{39} + x^{37} + x^{35} + \\x^{33} + x^{30} + x^{29} + x^{28} + x^{27} +x^{25} + \\x^{21} + x^{15} + x^{14} + x^{13} + x^{11} + x^{10} + \\x^9 + x^6 + x^5 + x^2 + x + 1 $
$ [[n, k, d]]_4 $ Map $ \langle \alpha g_1 +g_2, b\rangle $ Multinomial
$ [[ 7, 1, 3]]_4 $ T $ \langle\alpha (x^3+x^2 + 1)+ x, x^4 + x^3 + x^2 + x + 1 \rangle $ $ x^7 + x^4 + x^3 + x + 1 $
$ [[ 10, 8, 2]]_4 $ T $ \langle\alpha (x + 1)+ 1, x^2 + x + 1\rangle $ $ x^{10} + x^9 + x^7 + x^5 + x^4 + x^2 + x + 1 $
$ [[ 15, 7, 3]]_4 $ T $ \langle\alpha (x^4 + x + 1)+ x^2 + x + 1, x^4 + x^3 + 1 \rangle $ $ x^{15} + x^{10} + x^9 + x^7 + x^6 + x^5 + \\x^3 + x^2 + 1 $
$ [[ 30, 26, 2]]_4 $ T $ \langle\alpha (x^2 + x + 1)+ x^8 + x^6 + 1, x^{12} + x^{11} + \\x^8 + x^7 + x^5 + x^4 + x^2 + x + 1 \rangle $ $ x^{30} + x^{29} + x^{27} + x^{25} + x^{24} + x^{23} + \\x^{22} + x^{21} + x^{20} + x^{17} + x^{13} + x^{11} + \\x^{10} + x^9 + x^6 + x^5 + x^2 + x + 1 $
$ [[ 35, 29, 2]]_4 $ L $ \langle\alpha ( x + 1)+ x + 1, x^3 + x + 1 \rangle $ $ x^{35} + x^{34} + x^{33} + x^{31} + x^{27} + x^{25} + \\x^{24} + x^{22} + x^{20} + x^{18} + x^{17} + x^{16} + \\x^{15} + x^{11} + x^5 + x^4 + x + 1 $
$ [[ 36, 30, 2]]_4 $ W $ \langle\alpha ( x + 1)+ 1, x^2 + x + 1 \rangle $ $ x^{18} + x^{16} + x^{13} + x^{11} + x^9 + x^8 + \\x^7 + x^4 + x^3 + 1 $
$ [[ 48, 42, 2]]_4 $ W $ \langle\alpha ( x + 1)+ 1, x^2 + x + 1 \rangle $ $ x^{24} + x^{22} + x^{16} + x^{15} + x^{14} + x^{13} + \\x^{11} + x^{10} + x^7 + x^6 + x^4 + 1 $
$ [[ 56, 50, 2]]_4 $ L $ \langle\alpha ( x + 1)+ 1, x^3 + x + 1 \rangle $ $ x^{56} + x^{51} + x^{49} + x^{48} + x^{47} + x^{41} + \\x^{38} + x^{36} + x^{31} + x^{30} + x^{29} + x^{28} + \\x^{26} + x^{18} + x^{16} + x^{15} + x^{14} + x^{12} + \\x^{10} + x^9 + x^5 + x^2 + x + 1 $
$ [[ 72, 66, 2]]_4 $ W $ \langle\alpha ( x + 1)+ 1, x^2 + x + 1 \rangle $ $ x^{36} + x^{35} + x^{32} + x^{31} + x^{30} + x^{29} + \\x^{26} + x^{22} + x^{21} + x^{20} + x^{18} +x^{16} + \\x^{13} + x^{10} + x^9 + x^2 + x + 1 $
$ [[ 84, 76, 2]]_4 $ W $ \langle\alpha ( x + 1)+ 1, x^3 + x + 1 \rangle $ $ x^{42} + x^{41} + x^{40} + x^{39} + x^{37} + x^{35} + \\x^{33} + x^{30} + x^{29} + x^{28} + x^{27} +x^{25} + \\x^{21} + x^{15} + x^{14} + x^{13} + x^{11} + x^{10} + \\x^9 + x^6 + x^5 + x^2 + x + 1 $
[1]

Murat Şahİn, Hayrullah Özİmamoğlu. Additive Toeplitz codes over $ \mathbb{F}_{4} $. Advances in Mathematics of Communications, 2020, 14 (2) : 379-395. doi: 10.3934/amc.2020026

[2]

Taher Abualrub, Steven T. Dougherty. Additive and linear conjucyclic codes over $ {\mathbb{F}}_4 $. Advances in Mathematics of Communications, 2022, 16 (1) : 1-15. doi: 10.3934/amc.2020096

[3]

Wei Qi. On the polycyclic codes over $ \mathbb{F}_q+u\mathbb{F}_q $. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022015

[4]

Habibul Islam, Om Prakash, Patrick Solé. $ \mathbb{Z}_{4}\mathbb{Z}_{4}[u] $-additive cyclic and constacyclic codes. Advances in Mathematics of Communications, 2021, 15 (4) : 737-755. doi: 10.3934/amc.2020094

[5]

Om Prakash, Shikha Yadav, Habibul Islam, Patrick Solé. On $ \mathbb{Z}_4\mathbb{Z}_4[u^3] $-additive constacyclic codes. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022017

[6]

Tingting Wu, Jian Gao, Yun Gao, Fang-Wei Fu. $ {{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 641-657. doi: 10.3934/amc.2018038

[7]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[8]

Lingyu Diao, Jian Gao, Jiyong Lu. Some results on $ \mathbb{Z}_p\mathbb{Z}_p[v] $-additive cyclic codes. Advances in Mathematics of Communications, 2020, 14 (4) : 555-572. doi: 10.3934/amc.2020029

[9]

Roghayeh Mohammadi Hesari, Mahboubeh Hosseinabadi, Rashid Rezaei, Karim Samei. $\mathbb{F}_{p^{m}}\mathbb{F}_{p^{m}}{[u^2]}$-additive skew cyclic codes of length $2p^s $. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022023

[10]

Yonglin Cao, Yuan Cao, Hai Q. Dinh, Fang-Wei Fu, Jian Gao, Songsak Sriboonchitta. Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$. Advances in Mathematics of Communications, 2018, 12 (2) : 231-262. doi: 10.3934/amc.2018016

[11]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2022, 16 (3) : 525-570. doi: 10.3934/amc.2020123

[12]

Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067

[13]

Yasemin Cengellenmis, Abdullah Dertli, Steven T. Dougherty, Adrian Korban, Serap Şahinkaya, Deniz Ustun. Reversible $ G $-codes over the ring $ {\mathcal{F}}_{j,k} $ with applications to DNA codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021056

[14]

W. Cary Huffman. Additive cyclic codes over $\mathbb F_4$. Advances in Mathematics of Communications, 2008, 2 (3) : 309-343. doi: 10.3934/amc.2008.2.309

[15]

W. Cary Huffman. Additive cyclic codes over $\mathbb F_4$. Advances in Mathematics of Communications, 2007, 1 (4) : 427-459. doi: 10.3934/amc.2007.1.427

[16]

Fanghui Ma, Jian Gao, Fang-Wei Fu. New non-binary quantum codes from constacyclic codes over $ \mathbb{F}_q[u,v]/\langle u^{2}-1, v^{2}-v, uv-vu\rangle $. Advances in Mathematics of Communications, 2019, 13 (3) : 421-434. doi: 10.3934/amc.2019027

[17]

Joaquim Borges, Cristina Fernández-Córdoba, Roger Ten-Valls. On ${{\mathbb{Z}}}_{p^r}{{\mathbb{Z}}}_{p^s}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 169-179. doi: 10.3934/amc.2018011

[18]

Jie Geng, Huazhang Wu, Patrick Solé. On one-lee weight and two-lee weight $ \mathbb{Z}_2\mathbb{Z}_4[u] $ additive codes and their constructions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021046

[19]

Karim Samei, Arezoo Soufi. Quadratic residue codes over $\mathbb{F}_{p^r}+{u_1}\mathbb{F}_{p^r}+{u_2}\mathbb{F}_{p^r}+...+{u_t}\mathbb{F}_ {p^r}$. Advances in Mathematics of Communications, 2017, 11 (4) : 791-804. doi: 10.3934/amc.2017058

[20]

Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2022, 16 (3) : 485-501. doi: 10.3934/amc.2020121

2021 Impact Factor: 1.015

Metrics

  • PDF downloads (207)
  • HTML views (181)
  • Cited by (0)

[Back to Top]