[1]
|
E. F. Assmus, Jr. and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics, Vol. 103. Cambridge: Cambridge University Press, 1992.
doi: 10.1017/CBO9781316529836.
|
[2]
|
W. Bosma, J. Cannon and C. Playoust, The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125.
|
[3]
|
S. Braić, A. Golemac, J. Mandić and T. Vučičić, Primitive symmetric designs with up to $2500$ points, J. Combin Designs, 19 (2011), 463-474.
doi: 10.1002/jcd.20291.
|
[4]
|
T. Breuer, Decomposition Matrices, Available at:, The Modular Atlas homepage. http://www.math.rwth-aachen.de/MOC/decomposition. 1999.
|
[5]
|
A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Universitext, Springer, New York, 2012.
doi: 10.1007/978-1-4614-1939-6.
|
[6]
|
A. E. Brouwer and C. A. van Eijl, On the $p$-rank of the adjacency matrices of strongly regular graphs, J. Algebraic Combin., 1 (1992), 329-346.
doi: 10.1023/A:1022438616684.
|
[7]
|
A. E. Brouwer and H. van Maldeghem, Strongly Regular Graphs, Encyclopedia of Mathematics and its Applications, 182. Cambridge University Press, Cambridge, 2022. https://homepages.cwi.nl/~aeb/math/srg/rk3/srgw.pdf.
doi: 10.1017/9781009057226.
|
[8]
|
F. Buekenhout and H. Van Maldeghen, A characterization of some rank 2 incidence geometries by their automorphism group, Mitt. Math. Sem. Giessen, 218 (1994), 1-70.
|
[9]
|
A. R. Calderbank and J. -M. Goethals, Three weight codes and association schemes, Philips J. Res., 39 (1984), 143-152.
|
[10]
|
P. J. Cameron, Permutation Groups, London Mathematical Society Student Texts, 45, Cambridge: Cambridge University Press, 1999.
doi: 10.1017/CBO9780511623677.
|
[11]
|
P. J. Cameron and J. H. van Lint, Designs, Graphs, Codes and Their Links, London Mathematical Society Student Texts, 22, Cambridge: Cambridge University Press, 1991.
doi: 10.1017/CBO9780511623714.
|
[12]
|
N. Chigira, M. Harada and M. Kitazume, Permutation groups and binary self-orthogonal codes, J. Algebra, 309 (2007), 610-621.
doi: 10.1016/j.jalgebra.2006.06.001.
|
[13]
|
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, An Atlas of Finite Groups, Oxford University Press, Oxford, 1985.
|
[14]
|
A. Cossidente and O. H. King, On the geometry of the exceptional group $G_2(q), $ $q$ even, Des. Codes Cryptogr., 47 (2008), 145-157.
doi: 10.1007/s10623-007-9107-0.
|
[15]
|
D. Crnković, V. Mikulić and B. G. Rodrigues, Some strongly regular graphs and self-orthogonal codes from the unitary group ${U}_4(3)$, Glas. Mat. Ser. Ⅲ, 45 (2010), 307-323.
doi: 10.3336/gm.45.2.02.
|
[16]
|
H. J. Coutts, M. Quick and C. M. Roney-Dougal, The primitive permutation groups of degree less than $4096$, Comm. Algebra, 39 (2011), 3526-3546.
doi: 10.1080/00927872.2010.515521.
|
[17]
|
P. Dankelmann, J. D. Key and B. G. Rodrigues, A characterization of graphs by codes from their incidence matrices, Electron. J. of Combin., 20 (2013), Paper 18, 22 pp.
doi: 10.37236/2770.
|
[18]
|
P. Dankelmann, J. D. Key and B. G. Rodrigues, Codes from incidence matrices of graphs, Des. Codes Cryptogr., 68 (2013), 373-393.
doi: 10.1007/s10623-011-9594-x.
|
[19]
|
U. Dempwolff, Primitive rank-3 groups on symmetric designs, Des. Codes Crypt., 22 (2001), 191-207.
doi: 10.1023/A:1008373207617.
|
[20]
|
R. H. Dye, Interrelations of symplectic and orthogonal groups in characteristic two, J. Algebra, 59 (1979), 202-221.
doi: 10.1016/0021-8693(79)90157-1.
|
[21]
|
W. Fish, J. D. Key and E. Mwambene, Binary codes from reexive uniform subset graphs on 3-sets, Adv. Math. Commun., 9 (2015), 211-232.
doi: 10.3934/amc.2015.9.211.
|
[22]
|
W. Fish, J. D. Key and E. Mwambene, Ternary codes from some reflexive uniform subset graphs, Appl. Algebra Engrg. Comm. Comput., 25 (2014), 363-382.
doi: 10.1007/s00200-014-0233-4.
|
[23]
|
A. Günther and G. Nebe, Automorphisms of doubly even self-dual codes, Bull. London Math. Soc., 41 (2009), 769-778.
doi: 10.1112/blms/bdp026.
|
[24]
|
C. Jansen, K. Lux, R. Parker and R. Wilson, An Atlas of Brauer Characters, LMS Monographs New Series 11. Oxford: Oxford Science Publications, Clarendon Press, 1995.
|
[25]
|
D. Jungnickel and V. D. Tonchev, Exponential number of quasi-symmetric SDP designs and codes meeting the Grey-Rankin bound, Des. Codes and Cryptogr., 1 (1991), 247-253.
doi: 10.1007/BF00123764.
|
[26]
|
J. D. Key and J. Moori, Codes, designs and graphs from the Janko groups ${J}_1$ and ${J}_2$, J. Combin. Math and Combin. Comput., 40 (2002), 143-159.
|
[27]
|
W. Knapp and H.-J. Schaeffer, On the codes related to the Higman-Sims graph, Electron. J. of Combin., 22 (2015), Paper 1.19, 58 pp.
|
[28]
|
T. Le and B. G. Rodrigues, Magma computations for $G_2(q)$ of rank 3, Available at:, https://bgrodrigues.weebly.com/uploads/1/2/8/4/12846738/g2qrank3.txt
|
[29]
|
M. W. Liebeck, C. E. Praeger and J. Saxl, On the $2$-closures of finite permutation groups, J. Lond. Math. Soc., 37 (1987), 241-252.
doi: 10.1112/jlms/s2-37.2.241.
|
[30]
|
K. Lux and H. Pahlings, Representations of Groups: A Computational Approach, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2010.
|
[31]
|
A. A. Makhnev, $GQ(4, 2)$-extensions, the strongly regular case, Math. Notes, 68, 97–102.
|
[32]
|
J. Moori, Finite groups, designs and codes, Information security, coding theory and related combinatorics, 202–230, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 29, IOS, Amsterdam, 2011.
|
[33]
|
J. Moori and B. G. Rodrigues, Some designs and codes invariant under the simple group Co2, J. of Algebra, 316 (2007), 649-661.
doi: 10.1016/j.jalgebra.2007.02.004.
|
[34]
|
J. Moori and B. G. Rodrigues, Some designs and binary codes preserved by the simple group Ru of Rudvalis, J. Algebra, 372 (2012), 702-710.
doi: 10.1016/j.jalgebra.2012.09.032.
|
[35]
|
B. G. Rodrigues, Linear codes with complementary duals related to the complement of the Higman-Sims graph, Bull. Iranian Math. Soc., 43 (2017), 2183-2204.
|
[36]
|
V. D. Tonchev, Codes, in: Handbook of Combinatorial Designs, 2nd ed. (C. J. Colbourn and J. H. Dinitz, Eds.), Chapman and Hall/CRC, Boca Raton, 2007,667–702.
|
[37]
|
R. A. Wilson, The Finite Simple Groups, London: Springer-Verlag London Ltd., 2009. Graduate Texts in Mathematics, Vol. 251.
doi: 10.1007/978-1-84800-988-2.
|
[38]
|
R. A. Wilson, P. Walsh, J. Tripp, I. Suleiman, R. A. Parker, S. P. Norton, S. Nickerson, S. Linton, J. Bray and R. Abbott, Atlas of Finite Group Representations - version 3, http://brauer.maths.qmul.ac.uk/Atlas/v3/exc/.
|