[1]
|
L. Babai, On Lovász' lattice reduction and the nearest lattice point problem, Combinatorica, 6 (1986), 1-13.
doi: 10.1007/BF02579403.
|
[2]
|
R. C. Baker, M. Munsch and I. E. Shparlinski, Additive energy and a large sieve inequality for sparse sequences, preprint, arXiv: 2103.12659.
|
[3]
|
S. R. Blackburn, D. Gomez-Perez, J. Gutierrez and I. E. Shparlinski, Predicting nonlinear pseudorandom number generators, Math. Comp., 74 (2005), 1471-1494.
doi: 10.1090/S0025-5718-04-01698-9.
|
[4]
|
S. R. Blackburn, D. Gomez-Perez, J. Gutierrez and I. E. Shparlinski, Reconstructing noisy polynomial evaluation in residue rings, J. Algorithms, 61 (2006), 47-59.
doi: 10.1016/j.jalgor.2004.07.002.
|
[5]
|
J. Blömer and A. May, A tool kit for finding small roots of bivariate polynomials over the integers, in Advances in Cryptology–Eurocrypt 2005, Lecture Notes in Comput. Sci., 3494, Springer, Berlin, 2005,251–267.
doi: 10.1007/11426639_15.
|
[6]
|
D. Boneh, S. Halevi and N. Howgrave-Graham, The modular inversion hidden number problem, in Advances in Cryptology–ASIACRYPT 2001 (Gold Coast), Lecture Notes in Comput. Sci., 2248, Springer, Berlin, 2001, 36–51.
doi: 10.1007/3-540-45682-1_3.
|
[7]
|
J. Boyar, Inferring sequences produced by pseudo-random number generators, J. Assoc. Comput. Mach., 36 (1989), 129-141.
doi: 10.1145/58562.59305.
|
[8]
|
M.-C. Chang, J. Cilleruelo, M. Z. Garaev, J. Hernández, I. E. Shparlinski and A. Zumalacárregui, Points on curves in small boxes and applications, Michigan Math. J, 63 (2014), 503-534.
doi: 10.1307/mmj/1409932631.
|
[9]
|
D. Coppersmith, Finding small solutions to small degree polynomials, in Cryptography and Lattices (Providence, RI, 2001), Lecture Notes in Comput. Sci., 2146, Springer, Berlin, 2001, 20–31.
doi: 10.1007/3-540-44670-2_3.
|
[10]
|
D. Coppersmith, Small solutions to polynomial equations, and low exponent RSA vulnerabilities, J. Cryptology, 10 (1997), 233-260.
doi: 10.1007/s001459900030.
|
[11]
|
J.-S. Coron, Finding small roots of bivariate integer polynomial equations: A direct approach, in Advances in Cryptology–CRYPTO 2007, Lecture Notes in Comput. Sci., 4622, Springer, Berlin, 2007,379–394.
doi: 10.1007/978-3-540-74143-5_21.
|
[12]
|
A. Dunn, B. Kerr, I. E. Shparlinski and A. Zaharescu, Bilinear forms in Weyl sums for modular square roots and applications, Adv. Math., 375 (2020), 58pp.
doi: 10.1016/j.aim.2020.107369.
|
[13]
|
A. M. Frieze, J. Håstad, R. Kannan, J. C. Lagarias and A. Shamir, Reconstructing truncated integer variables satisfying linear congruences, SIAM J. Comput., 17 (1988), 262-280.
doi: 10.1137/0217016.
|
[14]
|
D. Gómez and J. Gutierrez, Recovering zeros of polynomials modulo a prime, Math. Comp., 83 (2014), 2953-2965.
doi: 10.1090/S0025-5718-2014-02808-1.
|
[15]
|
M. Grötschel, L. Lovász and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Algorithms and Combinatorics: Study and Research Texts, 2, Springer-Verlag, Berlin, 1988.
doi: 10.1007/978-3-642-97881-4.
|
[16]
|
J. Gutierrez and Á. Ibeas, Inferring sequences produced by a linear congruential generator on elliptic curves missing high-order bits, Des. Codes Cryptogr., 45 (2007), 199-212.
doi: 10.1007/s10623-007-9112-3.
|
[17]
|
N. Howgrave-Graham, Finding small roots of univariate modular equations revisited, in Cryptography and Coding (Cirencester, 1997), Lecture Notes in Comput. Sci., 1355, Springer, Berlin, 1997,131–142.
doi: 10.1007/BFb0024458.
|
[18]
|
E. Jochemsz and A. May, A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants, in Advances in Cryptology–ASIACRYPT 2006, Lecture Notes in Comput. Sci., 4284, Springer, Berlin, 2006,267–282.
doi: 10.1007/11935230_18.
|
[19]
|
A. Joux and J. Stern, Lattice reduction: A toolbox for the cryptanalyst, J. Cryptology, 11 (1998), 161-185.
doi: 10.1007/s001459900042.
|
[20]
|
R. Kannan, Minkowski's convex body theorem and integer programming, Math. Oper. Res., 12 (1987), 415-440.
doi: 10.1287/moor.12.3.415.
|
[21]
|
H. Krawczyk, How to predict congruential generators, J. Algorithms, 13 (1992), 527-545.
doi: 10.1016/0196-6774(92)90054-G.
|
[22]
|
A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann., 261 (1982), 515-534.
doi: 10.1007/BF01457454.
|
[23]
|
L. Mérai and I. E. Shparlinski, Sparsity of curves and additive and multiplicative expansion of rational maps over finite fields, Acta Arith., 188 (2019), 401-411.
doi: 10.4064/aa180307-20-8.
|
[24]
|
D. Micciancio and S. Goldwasser, Complexity of Lattice Problems. A Cryptographic Perspective, The Kluwer International Series in Engineering and Computer Science, 671, Kluwer Academic Publishers, Boston, MA, 2002.
doi: 10.1007/978-1-4615-0897-7.
|
[25]
|
P. Q. Nguyen and J. Stern, Lattice reduction in cryptology: An update, in Algorithmic Number Theory (Leiden, 2000), Lecture Notes in Comput. Sci., 1838, Springer, Berlin, 2000, 85–112.
doi: 10.1007/10722028_4.
|