Early Access articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Early Access publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Early Access articles via the “Early Access” tab for the selected journal.
In this paper, we first study the skew cyclic codes of length $ p^s $ over $ R_3 = \mathbb{F}_{p^m}+u\mathbb{F}_{p^m}+u^2\mathbb{F}_{p^m}, $ where $ p $ is a prime number and $ u^3 = 0. $ Then we characterize the algebraic structure of $ \mathbb{F}_{p^{m}}\mathbb{F}_{p^{m}}[u^2] $-additive skew cyclic codes of length $ 2p^s. $ We will show that there are sixteen different types of these codes and classify them in terms of their generators.
Citation: |
[1] |
Y. Al-Khamees, The determination of the group of automorphisms of a finite chain ring of characteristic $p$, Quart. J. Math. Oxford Ser. (2), 42 (1991), 387-391.
doi: 10.1093/qmath/42.1.387.![]() ![]() ![]() |
[2] |
I. Aydogdu, T. Abualrub and I. Siap, On $\mathbb{Z}_2\mathbb{Z}_2[u]$-additive codes, Int. J. Comput. Math., 92 (2015), 1806-1814.
doi: 10.1080/00207160.2013.859854.![]() ![]() ![]() |
[3] |
I. Aydogdu, T. Abualrub, I. Siap and N. Aydin, $\mathbb{Z}_2\mathbb{Z}_2[u]$-cyclic and constacyclic codes, IEEE. Trans. Inform. Theory, 63 (2017), 4883-4893.
doi: 10.1109/TIT.2016.2632163.![]() ![]() ![]() |
[4] |
I. Aydogdu, I. Siap and R. Ten-Valls, On the structure of $\mathbb{Z}_2\mathbb{Z}_2[u^3]$-linear and cyclic codes, Finite Fields Appl., 48 (2017), 241-260.
doi: 10.1016/j.ffa.2017.03.001.![]() ![]() ![]() |
[5] |
N. Benbelkacem, M. F. Ezerman, T. Abualrub, N. Aydin and A. Batoul, Skew cyclic codes over $\mathbb{F}_4R, $, J. Algebra Appl., 21 (2022), 20pp.
doi: 10.1142/S0219498822500657.![]() ![]() ![]() ![]() |
[6] |
D. Boucher, W. Geiselmann and F. Ulmer, Skew-cyclic codes, Appl. Algebra Engrg. Comm. Comput., 18 (2007) 379–389.
doi: 10.1007/s00200-007-0043-z.![]() ![]() ![]() ![]() |
[7] |
D. Boucher, P. Solé and F. Ulmer, Skew constacyclic codes over Galois rings, Adv. Math. Commun., 2 (2008), 273-292.
doi: 10.3934/amc.2008.2.273.![]() ![]() ![]() |
[8] |
D. Boucher and F. Ulmer, A note on the dual codes of module skew codes, in Cryptography and Coding, Lecture Notes in Comput. Sci., 7089, 2011, Springer, Heidelberg, 230–243.
doi: 10.1007/978-3-642-25516-8_14.![]() ![]() ![]() ![]() |
[9] |
D. Boucher and F. Ulmer, Self-dual skew codes and factorization of skew polynomials, J. Symbolic Comput., 60 (2014), 47-61.
doi: 10.1016/j.jsc.2013.10.003.![]() ![]() ![]() |
[10] |
S. M. Dodunekov and I. N. Landjev, Near-MDS codes over some small fields, Discrete Math., 213 (2000), 55-65.
doi: 10.1016/S0012-365X(99)00168-5.![]() ![]() ![]() |
[11] |
R. M. Hesari, R. Rezaei and K. Samei, On self-dual skew cyclic codes of length $p^s$ over $ \mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$, Discrete Math., 344 (2021), 16pp.
doi: 10.1016/j.disc.2021.112569.![]() ![]() ![]() ![]() |
[12] |
S. Jitman, S. Ling and P. Udomkavanich, Skew constacyclic codes over finite chain rings, Adv. Math. Commun., 6 (2012), 39-63.
doi: 10.3934/amc.2012.6.39.![]() ![]() ![]() |
[13] |
X. Liu and X. Xu, Some classes of repeated-root constacyclic codes over $ \mathbb{F}_{p^m} + u\mathbb{F}_{p^m}+u^2 \mathbb{F}_{p^m}$, J. Korean Math. Soc., 51 (2014), 853-866.
doi: 10.4134/JKMS.2014.51.4.853.![]() ![]() ![]() |
[14] |
S. Mahmoudi and K. Samei, $SR$-additive codes, Bull. Korean Math. Soc., 56 (2019), 1235-1255.
doi: 10.4134/BKMS.b180995.![]() ![]() ![]() |
[15] |
B. R. McDonald, Finite Rings with Identity, Pure and Applied Mathematics, 28, Marcel Dekker, Inc., New York, 1974.
![]() ![]() |
[16] |
A. Sharma and M. Bhaintwal, $ \mathbb{F}_3 R$-skew cyclic codes, Int. J. Inf. Coding Theory, 3 (2016), 234-251.
doi: 10.1504/IJICOT.2016.076967.![]() ![]() ![]() |
[17] |
R. Sobhani, Complete classification of $ (\delta+\alpha u^2)$-constacyclic codes of length $ p^k$ over $ \mathbb{F}_{p^m} + u\mathbb{F}_{p^m}+u^2 \mathbb{F}_{p^m}$, Finite Fields Appl., 34 (2015), 123-138.
doi: 10.1016/j.ffa.2015.01.008.![]() ![]() ![]() |