-
Previous Article
Some progress on optimal $ 2 $-D $ (n\times m,3,2,1) $-optical orthogonal codes
- AMC Home
- This Issue
-
Next Article
Constructions of asymptotically optimal codebooks with respect to Welch bound and Levenshtein bound
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
Constructions of optimal multiply constant-weight codes MCWC$ (3,n_1;1,n_2;1,n_3;8)s $
1. | School of Sciences, Nantong University, Nantong 226007, China |
2. | School of Mathematics and Statistics, University of New South Wales, N.S.W. 2052, Australia |
A binary code $ {\mathcal{C}} $ of length $ n = \sum_{i = 1}^{m}n_i $ and minimum distance $ d $ is said to be of multiply constant-weight and denoted by MCWC$ (w_1, n_1 $; $ w_2, n_2 $; $ \ldots $; $ w_m, n_m $; $ d) $, if each codeword has weight $ w_1 $ in the first $ n_1 $ coordinates, weight $ w_2 $ in the next $ n_2 $ coordinates, and so on and so forth. Multiply constant-weight codes (MCWCs) can be utilized to improve the reliability of certain physically unclonable function responses and have been widely studied. Research showed that multiply constant-weight codes are equivalent to generalized packing designs and generalized Howell designs (GHDs) can be regarded as generalized packing designs with a special block type. In this paper, we give combinatorial constructions for optimal MCWC$ (3, n_1;1, n_2;1, n_3;8) $s by a class of generalized packing designs, which come from generalized Howell designs. Furthermore, for $ e = 3, 4, 5 $, we prove that there exists a GHD $ (n+e, 3n) $ if and only if $ n\ge 2e+1 $ leaving some possible exceptions.
References:
[1] |
R. J. R. Abel,
Existence of five MOLS of orders 18 and 60, J. Combin. Des., 23 (2015), 135-139.
doi: 10.1002/jcd.21384. |
[2] |
R. J. R. Abel, R. F. Bailey, A. C. Burgess, P. Danziger and E. Mendelsohn,
On generalized Howell designs with block size three, Des. Codes Cryptogr., 81 (2016), 365-391.
doi: 10.1007/s10623-015-0162-7. |
[3] |
R. J. R. Abel, N. Chan, C. J. Colbourn, E. R. Lamken, C. Wang and J. Wang,
Doubly resolvable nearly Kirkman triple systems, J. Combin. Des., 21 (2013), 342-358.
doi: 10.1002/jcd.21342. |
[4] |
R. J. R. Abel, E. R. Lamken and J. Wang,
A few more Kirkman squares and doubly near resolvable BIBDs with block size $3$, Discrete Math., 308 (2008), 1102-1123.
doi: 10.1016/j.disc.2007.04.001. |
[5] |
B. A. Anderson, P. J. Schellenberg and D. R. Stinson,
The existence of Howell designs of even side, J. Comb. Theory Ser. A, 36 (1984), 23-55.
doi: 10.1016/0097-3165(84)90076-1. |
[6] |
J. Arhin, On the Construction and Structure of SOMAs and Related Partial Linear Spaces, Ph.D. Thesis, University of London, 2006. |
[7] |
J. Arhin,
Every SOMA$(n-2, n)$ is Trojan, Discrete Math., 310 (2010), 303-311.
doi: 10.1016/j.disc.2008.09.050. |
[8] |
R. F. Bailey and A. C. Burgess,
Generalized packing designs, Discrete Math., 313 (2013), 1167-1190.
doi: 10.1016/j.disc.2011.11.039. |
[9] |
E. F. Brickell,
A few results in message authentication, Congr.Numer., 43 (1984), 141-154.
|
[10] |
P. J. Cameron,
A generalisation of $t$-designs, Discrete Math., 309 (2009), 4835-4842.
doi: 10.1016/j.disc.2008.07.005. |
[11] |
Y. M. Chee, Z. Cherif, J. L. Danger, S. Guilley, H. M. Kiah, J. L. Kim, P. Solé and X. Zhang,
Multiply constant-weight codes and the reliability of loop physically unclonable functions, IEEE Trans. Inf. Theory, 60 (2014), 7026-7034.
doi: 10.1109/TIT.2014.2359207. |
[12] |
Y. M. Chee, H. M. Kiah, H. Zhang and X. Zhang,
Constructions of optimal and near optimal multiply constant-weight codes, IEEE Trans. Inf. Theory, 63 (2017), 3621-3629.
doi: 10.1109/TIT.2017.2690450. |
[13] |
Z. Cherif, J. L. Danger, S. Guilley, J. L. Kim and P. Solé, Multiply constant weight codes, In IEEE International Symposium on Information Theory, (2013).
doi: 10.1109/ISIT.2013.6620237. |
[14] |
Z. Cherif, J. L. Danger, S. Guilley and L. Bossuet, An easy-to-design puf based on a single oscillator: The loop puf, In Proceedings of the 2012 15th Euromicro Conference on Digital System Design, ser. DSD'12, (2012), 156–162.
doi: 10.1109/DSD.2012.22. |
[15] |
C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, 1996.
doi: 10.1201/9781420049954.![]() ![]() ![]() |
[16] |
C. J. Colbourn, E. R. Lamken, A. C. H. Ling and W. H. Mills,
The existence of Kirkman squares-doubly resolvable $(v, 3, 1)$-BIBDs, Des. Codes Cryptogr., 26 (2002), 169-196.
doi: 10.1023/A:1016513527747. |
[17] |
M. Deza and S. A. Vanstone,
Bounds for permutation arrays, J. Statist. Plan. Inference, 2 (1978), 197-209.
doi: 10.1016/0378-3758(78)90008-3. |
[18] |
J. H. Dinitz and D. R. Stinson, Room squares and related designs, In Contemporary Design Theory, (eds. J.H. Dinitz and D. R. Stinson (eds.), Wiley, New York, (1992), 137–204. |
[19] |
J. Du, R. J. R. Abel and J. Wang,
Some new resolvable GDDs with $k = 4$ and doubly resolvable GDDs with $k = 3$, Discrete Math., 338 (2015), 2015-2118.
doi: 10.1016/j.disc.2015.05.008. |
[20] |
T. Etzion,
Optimal doubly constant weight codes, J. Combin. Des., 16 (2008), 137-151.
doi: 10.1002/jcd.20160. |
[21] |
B. Gassend, D. Clarke, M. van Dijk and S. Devadas, Silicon physical random functions, In Proceedings of the 9th ACM Conference on Computer and Communications Security, ser. CCS'02, (2002), 148–160.
doi: 10.1145/586110.586132. |
[22] |
R. Pappu, B. Recht, J. Taylor and N. Gershenfeld,
Physical one-way functions, Science, 297 (2002), 2026-2030.
doi: 10.1126/science.1074376. |
[23] |
E. R. Lamken,
The existence of doubly resolvable $(v, 3, 2)$-BIBDs, J. Combin.Theory Ser. A, 72 (1995), 50-76.
doi: 10.1016/0097-3165(95)90028-4. |
[24] |
R. C. Mullin and W. D. Wallis,
The existence of Room squares, Aequ. Math., 13 (1975), 1-7.
doi: 10.1007/BF01834113. |
[25] |
N. C. K. Phillips and W. D. Wallis,
All solutions to a tournament problem, Congr. Numer., 114 (1996), 193-196.
|
[26] |
J. Schönheim,
On maximal systems of $k$-tuples, Studia Sci. Math. Hungar., 1 (1966), 363-368.
|
[27] |
L. H. Soicher, On the structure and classification of SOMAs: Generalizations of mutually orthogonal Latin squares, Electron. J. Combin., 6 (1999), 32, 15 pp. |
[28] |
D. R. Stinson, Some Classes of Frames, and the Spectra of Skew Room Squares and Howell Designs, Ph.D. Thesis, University of Waterloo, 1981. |
[29] |
D. R. Stinson,
The existence of Howell designs of odd side, J. Combin. Theory Ser. A, 32 (1982), 53-65.
doi: 10.1016/0097-3165(82)90064-4. |
[30] |
G. E. Suh and S. Devadas, Physical unclonable functions for device authentication and secret key generation, In Proceedings of the 44th Annual Design Automation Conference, ser. DAC'07, (2007), 9–14. |
[31] |
D. T. Todorov,
Four mutually orthogonal Latin squares of order $14$, J. Combin. Des., 20 (2012), 363-367.
doi: 10.1002/jcd.21298. |
[32] |
C. Wang, Y. Chang and T. Feng,
Optimal multiply constant-weight codes from generalized Howell designs, Graphs Combin., 35 (2019), 611-632.
doi: 10.1007/s00373-019-02020-7. |
[33] |
C. Wang and B. Du,
Existence of generalized Howell designs of side $n+ 1$, Util. Math., 80 (2009), 143-159.
|
[34] |
X. Wang, H. Wei, C. Shangguan and G. Ge,
New bounds and constructions for multiply constant-weight codes, IEEE Trans. Inf. Theory, 62 (2016), 6315-6327.
doi: 10.1109/TIT.2016.2609389. |
[35] |
J. Yao, Y. Hu and J. Wang,
Existence of generalized Howell designs GHD$(n+5, 3n)$, J. Guangxi Norm. Uni. (Natural Science Edition), 39 (2021), 103-114.
|
show all references
References:
[1] |
R. J. R. Abel,
Existence of five MOLS of orders 18 and 60, J. Combin. Des., 23 (2015), 135-139.
doi: 10.1002/jcd.21384. |
[2] |
R. J. R. Abel, R. F. Bailey, A. C. Burgess, P. Danziger and E. Mendelsohn,
On generalized Howell designs with block size three, Des. Codes Cryptogr., 81 (2016), 365-391.
doi: 10.1007/s10623-015-0162-7. |
[3] |
R. J. R. Abel, N. Chan, C. J. Colbourn, E. R. Lamken, C. Wang and J. Wang,
Doubly resolvable nearly Kirkman triple systems, J. Combin. Des., 21 (2013), 342-358.
doi: 10.1002/jcd.21342. |
[4] |
R. J. R. Abel, E. R. Lamken and J. Wang,
A few more Kirkman squares and doubly near resolvable BIBDs with block size $3$, Discrete Math., 308 (2008), 1102-1123.
doi: 10.1016/j.disc.2007.04.001. |
[5] |
B. A. Anderson, P. J. Schellenberg and D. R. Stinson,
The existence of Howell designs of even side, J. Comb. Theory Ser. A, 36 (1984), 23-55.
doi: 10.1016/0097-3165(84)90076-1. |
[6] |
J. Arhin, On the Construction and Structure of SOMAs and Related Partial Linear Spaces, Ph.D. Thesis, University of London, 2006. |
[7] |
J. Arhin,
Every SOMA$(n-2, n)$ is Trojan, Discrete Math., 310 (2010), 303-311.
doi: 10.1016/j.disc.2008.09.050. |
[8] |
R. F. Bailey and A. C. Burgess,
Generalized packing designs, Discrete Math., 313 (2013), 1167-1190.
doi: 10.1016/j.disc.2011.11.039. |
[9] |
E. F. Brickell,
A few results in message authentication, Congr.Numer., 43 (1984), 141-154.
|
[10] |
P. J. Cameron,
A generalisation of $t$-designs, Discrete Math., 309 (2009), 4835-4842.
doi: 10.1016/j.disc.2008.07.005. |
[11] |
Y. M. Chee, Z. Cherif, J. L. Danger, S. Guilley, H. M. Kiah, J. L. Kim, P. Solé and X. Zhang,
Multiply constant-weight codes and the reliability of loop physically unclonable functions, IEEE Trans. Inf. Theory, 60 (2014), 7026-7034.
doi: 10.1109/TIT.2014.2359207. |
[12] |
Y. M. Chee, H. M. Kiah, H. Zhang and X. Zhang,
Constructions of optimal and near optimal multiply constant-weight codes, IEEE Trans. Inf. Theory, 63 (2017), 3621-3629.
doi: 10.1109/TIT.2017.2690450. |
[13] |
Z. Cherif, J. L. Danger, S. Guilley, J. L. Kim and P. Solé, Multiply constant weight codes, In IEEE International Symposium on Information Theory, (2013).
doi: 10.1109/ISIT.2013.6620237. |
[14] |
Z. Cherif, J. L. Danger, S. Guilley and L. Bossuet, An easy-to-design puf based on a single oscillator: The loop puf, In Proceedings of the 2012 15th Euromicro Conference on Digital System Design, ser. DSD'12, (2012), 156–162.
doi: 10.1109/DSD.2012.22. |
[15] |
C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, 1996.
doi: 10.1201/9781420049954.![]() ![]() ![]() |
[16] |
C. J. Colbourn, E. R. Lamken, A. C. H. Ling and W. H. Mills,
The existence of Kirkman squares-doubly resolvable $(v, 3, 1)$-BIBDs, Des. Codes Cryptogr., 26 (2002), 169-196.
doi: 10.1023/A:1016513527747. |
[17] |
M. Deza and S. A. Vanstone,
Bounds for permutation arrays, J. Statist. Plan. Inference, 2 (1978), 197-209.
doi: 10.1016/0378-3758(78)90008-3. |
[18] |
J. H. Dinitz and D. R. Stinson, Room squares and related designs, In Contemporary Design Theory, (eds. J.H. Dinitz and D. R. Stinson (eds.), Wiley, New York, (1992), 137–204. |
[19] |
J. Du, R. J. R. Abel and J. Wang,
Some new resolvable GDDs with $k = 4$ and doubly resolvable GDDs with $k = 3$, Discrete Math., 338 (2015), 2015-2118.
doi: 10.1016/j.disc.2015.05.008. |
[20] |
T. Etzion,
Optimal doubly constant weight codes, J. Combin. Des., 16 (2008), 137-151.
doi: 10.1002/jcd.20160. |
[21] |
B. Gassend, D. Clarke, M. van Dijk and S. Devadas, Silicon physical random functions, In Proceedings of the 9th ACM Conference on Computer and Communications Security, ser. CCS'02, (2002), 148–160.
doi: 10.1145/586110.586132. |
[22] |
R. Pappu, B. Recht, J. Taylor and N. Gershenfeld,
Physical one-way functions, Science, 297 (2002), 2026-2030.
doi: 10.1126/science.1074376. |
[23] |
E. R. Lamken,
The existence of doubly resolvable $(v, 3, 2)$-BIBDs, J. Combin.Theory Ser. A, 72 (1995), 50-76.
doi: 10.1016/0097-3165(95)90028-4. |
[24] |
R. C. Mullin and W. D. Wallis,
The existence of Room squares, Aequ. Math., 13 (1975), 1-7.
doi: 10.1007/BF01834113. |
[25] |
N. C. K. Phillips and W. D. Wallis,
All solutions to a tournament problem, Congr. Numer., 114 (1996), 193-196.
|
[26] |
J. Schönheim,
On maximal systems of $k$-tuples, Studia Sci. Math. Hungar., 1 (1966), 363-368.
|
[27] |
L. H. Soicher, On the structure and classification of SOMAs: Generalizations of mutually orthogonal Latin squares, Electron. J. Combin., 6 (1999), 32, 15 pp. |
[28] |
D. R. Stinson, Some Classes of Frames, and the Spectra of Skew Room Squares and Howell Designs, Ph.D. Thesis, University of Waterloo, 1981. |
[29] |
D. R. Stinson,
The existence of Howell designs of odd side, J. Combin. Theory Ser. A, 32 (1982), 53-65.
doi: 10.1016/0097-3165(82)90064-4. |
[30] |
G. E. Suh and S. Devadas, Physical unclonable functions for device authentication and secret key generation, In Proceedings of the 44th Annual Design Automation Conference, ser. DAC'07, (2007), 9–14. |
[31] |
D. T. Todorov,
Four mutually orthogonal Latin squares of order $14$, J. Combin. Des., 20 (2012), 363-367.
doi: 10.1002/jcd.21298. |
[32] |
C. Wang, Y. Chang and T. Feng,
Optimal multiply constant-weight codes from generalized Howell designs, Graphs Combin., 35 (2019), 611-632.
doi: 10.1007/s00373-019-02020-7. |
[33] |
C. Wang and B. Du,
Existence of generalized Howell designs of side $n+ 1$, Util. Math., 80 (2009), 143-159.
|
[34] |
X. Wang, H. Wei, C. Shangguan and G. Ge,
New bounds and constructions for multiply constant-weight codes, IEEE Trans. Inf. Theory, 62 (2016), 6315-6327.
doi: 10.1109/TIT.2016.2609389. |
[35] |
J. Yao, Y. Hu and J. Wang,
Existence of generalized Howell designs GHD$(n+5, 3n)$, J. Guangxi Norm. Uni. (Natural Science Edition), 39 (2021), 103-114.
|
7 | 47 | 51 | 55 | 59 | 63 | 77 | 83 | 87 | 95 | 119 |
7 | 47 | 51 | 55 | 59 | 63 | 77 | 83 | 87 | 95 | 119 |
48 | 50 | 52 | 56 | 58 | 60 | 62 | 64 | 68 | 72 | 74 | 76 | 78 | 80 | 82 |
84 | 88 | 90 | 92 | 98 | 100 | 104 | 106 | 108 | 110 | 112 | 114 | 116 | 120 | 124 |
126 | 128 | 130 | 132 | 136 | 138 | 142 | 144 | 146 | 152 | 154 | 156 | 158 | 160 | 168 |
170 | 172 | 176 | 180 | 186 | 188 | 190 | 192 | 194 | 196 | 202 | 204 | 208 | 210 | 212 |
218 | 220 | 222 | 224 |
48 | 50 | 52 | 56 | 58 | 60 | 62 | 64 | 68 | 72 | 74 | 76 | 78 | 80 | 82 |
84 | 88 | 90 | 92 | 98 | 100 | 104 | 106 | 108 | 110 | 112 | 114 | 116 | 120 | 124 |
126 | 128 | 130 | 132 | 136 | 138 | 142 | 144 | 146 | 152 | 154 | 156 | 158 | 160 | 168 |
170 | 172 | 176 | 180 | 186 | 188 | 190 | 192 | 194 | 196 | 202 | 204 | 208 | 210 | 212 |
218 | 220 | 222 | 224 |
56 | 64 | 72 | 80 | 96 | 112 | 120 | 136 | 144 | 152 | 176 | 184 | 200 | 220 | 224 |
56 | 64 | 72 | 80 | 96 | 112 | 120 | 136 | 144 | 152 | 176 | 184 | 200 | 220 | 224 |
42 | 44 | 46 | 48 | 50 | 52 | 54 | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 70 |
74 | 76 | 78 | 80 | 84 | 88 | 90 | 94 | 96 | 104 | 106 | 108 | 118 | 120 |
42 | 44 | 46 | 48 | 50 | 52 | 54 | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 70 |
74 | 76 | 78 | 80 | 84 | 88 | 90 | 94 | 96 | 104 | 106 | 108 | 118 | 120 |
29 | 31 | 33 | 35 | 37 | 41 | 43 | 45 | 47 | 49 | 51 | 53 | 55 | 61 | 63 |
69 | 77 | 95 |
29 | 31 | 33 | 35 | 37 | 41 | 43 | 45 | 47 | 49 | 51 | 53 | 55 | 61 | 63 |
69 | 77 | 95 |
29 | 31 | 33 | 35 | 37 | 41 | 43 | 47 | 49 | 51 | 53 | 57 | 59 | 61 |
63 | 69 | 73 | 77 | 79 | 81 | 83 | 89 | 91 | 93 | 99 | 101 | 107 | 109 |
111 | 113 | 117 | 121 | 127 | 129 | 131 | 133 | 137 | 139 | 143 | 147 | 153 | 157 |
159 | 161 | 169 | 171 | 173 | 177 | 181 | 187 | 189 | 191 | 193 | 197 | 203 | 209 |
211 | 213 | 219 | 221 | 223 | 233 | 237 | 239 | 241 | 243 | 249 | 257 | 259 | 261 |
267 | 269 | 271 | 275 | 277 | 281 | 283 | 287 | 289 | 297 | 299 | 301 | 303 | 307 |
309 | 313 | 315 | 321 | 323 | 329 | 333 | 337 | 341 | 349 | 351 |
29 | 31 | 33 | 35 | 37 | 41 | 43 | 47 | 49 | 51 | 53 | 57 | 59 | 61 |
63 | 69 | 73 | 77 | 79 | 81 | 83 | 89 | 91 | 93 | 99 | 101 | 107 | 109 |
111 | 113 | 117 | 121 | 127 | 129 | 131 | 133 | 137 | 139 | 143 | 147 | 153 | 157 |
159 | 161 | 169 | 171 | 173 | 177 | 181 | 187 | 189 | 191 | 193 | 197 | 203 | 209 |
211 | 213 | 219 | 221 | 223 | 233 | 237 | 239 | 241 | 243 | 249 | 257 | 259 | 261 |
267 | 269 | 271 | 275 | 277 | 281 | 283 | 287 | 289 | 297 | 299 | 301 | 303 | 307 |
309 | 313 | 315 | 321 | 323 | 329 | 333 | 337 | 341 | 349 | 351 |
R | C | ||||||||
A GHD |
|||||||||
with an empty | |||||||||
S | A | S | A | S | A | S | A | S | A |
0 | 8 | 5 | 2 | 3 | |||||
1 | |||||||||
R | C | ||||||||
A GHD |
|||||||||
with an empty | |||||||||
S | A | S | A | S | A | S | A | S | A |
0 | 7 | 4 | 6 | 1 | |||||
5 | 2 | ||||||||
R | C | ||||||||
A GHD |
|||||||||
with an empty | |||||||||
S | A | S | A | S | A | S | A | S | A |
9 | 4 | 5 | 3 | 10 | |||||
6 | 0 | 8 |
R | C | ||||||||
A GHD |
|||||||||
with an empty | |||||||||
S | A | S | A | S | A | S | A | S | A |
0 | 8 | 5 | 2 | 3 | |||||
1 | |||||||||
R | C | ||||||||
A GHD |
|||||||||
with an empty | |||||||||
S | A | S | A | S | A | S | A | S | A |
0 | 7 | 4 | 6 | 1 | |||||
5 | 2 | ||||||||
R | C | ||||||||
A GHD |
|||||||||
with an empty | |||||||||
S | A | S | A | S | A | S | A | S | A |
9 | 4 | 5 | 3 | 10 | |||||
6 | 0 | 8 |
R | C | ||||||||
A GHD |
|||||||||
with an empty | |||||||||
S | A | S | A | S | A | S | A | S | A |
3 | 2 | 7 | 0 | 1 | |||||
10 | 5 | ||||||||
R | C | ||||||||
A GHD |
|||||||||
with an empty | |||||||||
S | A | S | A | S | A | S | A | S | A |
1 | 7 | 9 | 0 | 3 | |||||
5 | 2 | 10 | |||||||
R | C | ||||||||
A GHD |
|||||||||
with an empty | |||||||||
S | A | S | A | S | A | S | A | S | A |
7 | 1 | 12 | 8 | 0 | |||||
10 | 2 | 6 | 3 | ||||||
R | C | ||||||||
An GHD |
|||||||||
with an empty | |||||||||
S | A | S | A | S | A | S | A | S | A |
6 | 12 | 10 | 7 | 9 | |||||
11 | 1 | 5 | 2 | 0 |
R | C | ||||||||
A GHD |
|||||||||
with an empty | |||||||||
S | A | S | A | S | A | S | A | S | A |
3 | 2 | 7 | 0 | 1 | |||||
10 | 5 | ||||||||
R | C | ||||||||
A GHD |
|||||||||
with an empty | |||||||||
S | A | S | A | S | A | S | A | S | A |
1 | 7 | 9 | 0 | 3 | |||||
5 | 2 | 10 | |||||||
R | C | ||||||||
A GHD |
|||||||||
with an empty | |||||||||
S | A | S | A | S | A | S | A | S | A |
7 | 1 | 12 | 8 | 0 | |||||
10 | 2 | 6 | 3 | ||||||
R | C | ||||||||
An GHD |
|||||||||
with an empty | |||||||||
S | A | S | A | S | A | S | A | S | A |
6 | 12 | 10 | 7 | 9 | |||||
11 | 1 | 5 | 2 | 0 |
R | C | ||||||||
A GHD |
|||||||||
with an empty | |||||||||
S | A | S | A | S | A | S | A | S | A |
0 | 12 | 6 | 10 | 9 | |||||
13 | 2 | 8 | 14 | 3 | |||||
1 | 7 |
R | C | ||||||||
A GHD |
|||||||||
with an empty | |||||||||
S | A | S | A | S | A | S | A | S | A |
0 | 12 | 6 | 10 | 9 | |||||
13 | 2 | 8 | 14 | 3 | |||||
1 | 7 |
45, 50 | 9, 10 | 5 | 0 | 53-57 | 9 | 5 | 8-12 | |
58-62 | 10 | 5 | 8-12 | 63-67 | 11 | 5 | 8-12 | |
68-76 | 12 | 5 | 8-16 | 77-81 | 9 | 7 | 14-18 | |
82-93 | 9 | 8 | 10-21 | 94-106 | 12 | 7 | 10-22 |
45, 50 | 9, 10 | 5 | 0 | 53-57 | 9 | 5 | 8-12 | |
58-62 | 10 | 5 | 8-12 | 63-67 | 11 | 5 | 8-12 | |
68-76 | 12 | 5 | 8-16 | 77-81 | 9 | 7 | 14-18 | |
82-93 | 9 | 8 | 10-21 | 94-106 | 12 | 7 | 10-22 |
|
||||||||
55 | 11 | 5 | 0 | 64-67 | 11 | 5 | 9-12 | |
69-76 | 12 | 5 | 9-16 | 77-81 | 13 | 5 | 12-16 | |
82-86 | 14 | 5 | 12-16 | 87-95 | 11 | 7 | 10-18 | |
96-108 | 12 | 7 | 12-24 | 109-116 | 12 | 8 | 13-20 |
|
||||||||
55 | 11 | 5 | 0 | 64-67 | 11 | 5 | 9-12 | |
69-76 | 12 | 5 | 9-16 | 77-81 | 13 | 5 | 12-16 | |
82-86 | 14 | 5 | 12-16 | 87-95 | 11 | 7 | 10-18 | |
96-108 | 12 | 7 | 12-24 | 109-116 | 12 | 8 | 13-20 |
[1] |
Jamshid Moori, Amin Saeidi. Some designs and codes invariant under the Tits group. Advances in Mathematics of Communications, 2017, 11 (1) : 77-82. doi: 10.3934/amc.2017003 |
[2] |
Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021002 |
[3] |
Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161 |
[4] |
Crnković Dean, Vedrana Mikulić Crnković, Bernardo G. Rodrigues. On self-orthogonal designs and codes related to Held's simple group. Advances in Mathematics of Communications, 2018, 12 (3) : 607-628. doi: 10.3934/amc.2018036 |
[5] |
Michael Kiermaier, Reinhard Laue. Derived and residual subspace designs. Advances in Mathematics of Communications, 2015, 9 (1) : 105-115. doi: 10.3934/amc.2015.9.105 |
[6] |
José Ignacio Iglesias Curto. Generalized AG convolutional codes. Advances in Mathematics of Communications, 2009, 3 (4) : 317-328. doi: 10.3934/amc.2009.3.317 |
[7] |
David Clark, Vladimir D. Tonchev. A new class of majority-logic decodable codes derived from polarity designs. Advances in Mathematics of Communications, 2013, 7 (2) : 175-186. doi: 10.3934/amc.2013.7.175 |
[8] |
Stefka Bouyuklieva, Zlatko Varbanov. Some connections between self-dual codes, combinatorial designs and secret sharing schemes. Advances in Mathematics of Communications, 2011, 5 (2) : 191-198. doi: 10.3934/amc.2011.5.191 |
[9] |
Rong Wang, Xiaoni Du, Cuiling Fan. Infinite families of 2-designs from a class of non-binary Kasami cyclic codes. Advances in Mathematics of Communications, 2021, 15 (4) : 663-676. doi: 10.3934/amc.2020088 |
[10] |
Xiaoni Du, Rong Wang, Chunming Tang, Qi Wang. Infinite families of 2-designs from two classes of binary cyclic codes with three nonzeros. Advances in Mathematics of Communications, 2022, 16 (1) : 157-168. doi: 10.3934/amc.2020106 |
[11] |
Yan Liu, Xiwang Cao. Infinite families of 2-designs from a class of affine-invariant codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022011 |
[12] |
Ziling Heng, Dexiang Li, Fenjin Liu, Weiqiong Wang. Infinite families of $ t $-designs and strongly regular graphs from punctured codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022043 |
[13] |
Ivica Martinjak, Mario-Osvin Pavčević. Symmetric designs possessing tactical decompositions. Advances in Mathematics of Communications, 2011, 5 (2) : 199-208. doi: 10.3934/amc.2011.5.199 |
[14] |
Peter Boyvalenkov, Maya Stoyanova. New nonexistence results for spherical designs. Advances in Mathematics of Communications, 2013, 7 (3) : 279-292. doi: 10.3934/amc.2013.7.279 |
[15] |
Andries E. Brouwer, Tuvi Etzion. Some new distance-4 constant weight codes. Advances in Mathematics of Communications, 2011, 5 (3) : 417-424. doi: 10.3934/amc.2011.5.417 |
[16] |
Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161 |
[17] |
Michael Braun, Michael Kiermaier, Reinhard Laue. New 2-designs over finite fields from derived and residual designs. Advances in Mathematics of Communications, 2019, 13 (1) : 165-170. doi: 10.3934/amc.2019010 |
[18] |
Peter Beelen, David Glynn, Tom Høholdt, Krishna Kaipa. Counting generalized Reed-Solomon codes. Advances in Mathematics of Communications, 2017, 11 (4) : 777-790. doi: 10.3934/amc.2017057 |
[19] |
Kamil Otal, Ferruh Özbudak, Wolfgang Willems. Self-duality of generalized twisted Gabidulin codes. Advances in Mathematics of Communications, 2018, 12 (4) : 707-721. doi: 10.3934/amc.2018042 |
[20] |
Negin Karimi, Ahmad Yousefian Darani, Marcus Greferath. Correcting adversarial errors with generalized regenerating codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022005 |
2021 Impact Factor: 1.015
Tools
Article outline
Figures and Tables
[Back to Top]