In this paper, we develop the theory of convolutional codes over finite commutative chain rings. In particular, we focus on maximum distance profile (MDP) convolutional codes and we provide a characterization of these codes, generalizing the one known for fields. Moreover, we relate (reverse) MDP convolutional codes over a finite chain ring with (reverse) MDP convolutional codes over its residue field. Finally, we provide a construction of (reverse) MDP convolutional codes over finite chain rings generalizing the notion of (reverse) superregular matrices.
Citation: |
[1] |
G. N. Alfarano, D. Napp, A. Neri and V. Requena, Weighted Reed-Solomon convolutional codes, preprint, (2020), arXiv: 2012.11417.
![]() |
[2] |
P. J. Almeida, D. Napp and R. Pinto, Superregular matrices and applications to convolutional codes, Linear Algebra Appl., 499 (2016), 1-25.
doi: 10.1016/j.laa.2016.02.034.![]() ![]() ![]() |
[3] |
R. Baldini Filho and P. G. Farrell, Coded modulation with convolutional codes over rings, International Symposium on Coding Theory and Applications (held in Europe), (1990), 271-280.
doi: 10.1007/3-540-54303-1_138.![]() ![]() |
[4] |
R. Baldini, A. Pessoa and D. Arantes, Systematic linear codes over a ring for encoded phase modulation, Int. Symposium on Inform. and Coding Theory (ISICT 87), (1987).
![]() |
[5] |
G. Bini and F. Flamini, Finite Commutative Rings and Their Applications, The Kluwer International Series in Engineering and Computer Science, 680. Kluwer Academic Publishers, Boston, MA, 2002.
doi: 10.1007/978-1-4615-0957-8.![]() ![]() ![]() |
[6] |
I. F. Blake, Codes over certain rings, Inf. Control., 20 (1972), 396-404.
doi: 10.1016/S0019-9958(72)90223-9.![]() ![]() ![]() |
[7] |
I. F. Blake, Codes over integer residue rings, Inf. Control., 29 (1975), 295-300.
doi: 10.1016/S0019-9958(75)80001-5.![]() ![]() ![]() |
[8] |
A. R. Calderbank and N. J. Sloane, Modular and $p$-adic cyclic codes, Des. Codes Cryptogr., 6 (1995), 21-35.
doi: 10.1007/BF01390768.![]() ![]() ![]() |
[9] |
H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.
doi: 10.1109/TIT.2004.831789.![]() ![]() ![]() |
[10] |
M. El Oued and P. Solé, MDS convolutional codes over a finite ring, IEEE Trans. Inform. Theory, 59 (2013), 7305-7313.
doi: 10.1109/TIT.2013.2277721.![]() ![]() ![]() |
[11] |
F. Fagnani and S. Zampieri, System-theoretic properties of convolutional codes over rings, IEEE Trans. Inform. Theory, 47 (2001), 2256-2274.
doi: 10.1109/18.945247.![]() ![]() ![]() |
[12] |
C. Feng, R. W. Nóbrega, F. R. Kschischang and D. Silva, Communication over finite-chain-ring matrix channels, IEEE Trans. Inform. Theory, 60 (2014), 5899-5917.
doi: 10.1109/TIT.2014.2346079.![]() ![]() ![]() |
[13] |
H. Gluesing-Luerssen, J. Rosenthal and R. Smarandache, Strongly-MDS convolutional codes, IEEE Trans. Inform. Theory, 52 (2006), 584-598.
doi: 10.1109/TIT.2005.862100.![]() ![]() ![]() |
[14] |
A. Gruica, MDP Convolutional Codes Over $\mathbb{Z}_{p^r}$, Master's thesis, University of Zurich, 2020, https://www.math.uzh.ch/index.php?id=pmastertheses&key1=604.
![]() |
[15] |
T. Honold and I. Landjev, Linear codes over finite chain rings, Electron. J. Comb., 7 (2000), Research Paper 11, 22 pp.
![]() ![]() |
[16] |
R. Hutchinson, The existence of strongly MDS convolutional codes, SIAM J Control Optim., 47 (2008), 2812-2826.
doi: 10.1137/050638977.![]() ![]() ![]() |
[17] |
M. Kuijper and R. Pinto, On minimality of convolutional ring encoders, IEEE Trans. Inform. Theory, 55 (2009), 4890-4897.
doi: 10.1109/TIT.2009.2030486.![]() ![]() ![]() |
[18] |
M. Kuijper, R. Pinto and J. W. Polderman, The predictable degree property and row reducedness for systems over a finite ring, Linear Algebra Appl., 425 (2007), 776-796.
doi: 10.1016/j.laa.2007.04.015.![]() ![]() ![]() |
[19] |
J. Lieb, Complete MDP convolutional codes, J. Algebra its Appl., 18 (2019), 1950105, 13 pp.
doi: 10.1142/S0219498819501056.![]() ![]() ![]() |
[20] |
J. Massey, Convolutional Codes Over Rings, Fourth Joint Swedish-Soviet International Workshop on Information Theory, 1989.
![]() |
[21] |
B. R. McDonald, Finite Rings with Identity, Pure and Applied Mathematics, Vol. 28. Marcel Dekker, Inc., New York, 1974.
![]() ![]() |
[22] |
D. Napp, R. Pinto and C. Rocha, Noncatastrophic convolutional codes over a finite ring, J. Algebra Appl., (2021), 2350029.
doi: 10.1142/S0219498823500299.![]() ![]() |
[23] |
D. Napp, R. Pinto and M. Toste., On MDS convolutional codes over $\mathbb{Z}_{p^r}$, Des. Codes Cryptogr., 83 (2017), 101-114.
doi: 10.1007/s10623-016-0204-9.![]() ![]() ![]() |
[24] |
D. Napp, R. Pinto and M. Toste, Column distances of convolutional codes over $\mathbb{Z}_{p^r}$, IEEE Trans. Inform. Theory, 65 (2019), 1063-1071.
doi: 10.1109/TIT.2018.2870436.![]() ![]() ![]() |
[25] |
A. A. Nechaev, Finite rings with applications, Handbook of Algebra, Handb. Algebr., Elsevier/North-Holland, Amsterdam, 5 (2008), 213-320.
doi: 10.1016/S1570-7954(07)05005-X.![]() ![]() ![]() |
[26] |
G. H. Norton and A. Sălăgean, On the Hamming distance of linear codes over a finite chain ring, IEEE Trans. Inform. Theory, 46 (2000), 1060-1067.
doi: 10.1109/18.841186.![]() ![]() ![]() |
[27] |
G. H. Norton and A. Sălăgean, On the structure of linear and cyclic codes over a finite chain ring, Appl. Algebra Eng. Commun. Comput., 10 (2000), 489-506.
doi: 10.1007/PL00012382.![]() ![]() ![]() |
[28] |
J. Renner, A. Neri and S. Puchinger, Low-rank parity-check codes over Galois rings, Des. Codes Cryptogr., 89 (2021), 351-386.
doi: 10.1007/s10623-020-00825-9.![]() ![]() ![]() |
[29] |
E. Spiegel, Codes over $\mathbb{Z}_m$, revisited, Inf. Control., 37 (1978), 100-104.
doi: 10.1016/S0019-9958(78)90461-8.![]() ![]() ![]() |
[30] |
V. Tomás, J. Rosenthal and R. Smarandache, Decoding of convolutional codes over the erasure channel, IEEE Trans. Inform. Theory, 58 (2012), 90-108.
doi: 10.1109/TIT.2011.2171530.![]() ![]() ![]() |
[31] |
M. Toste, Distance Properties of Convolutional Codes over $\mathbb{Z}_{p^r}$, PhD thesis, Universidade de Aveiro (Portugal), 2016.
![]() ![]() |