[1]
|
M. Abramson, Restricted combinations and compositions, Fibonacci Quart., 14 (1976), 439-452.
|
[2]
|
H. Astola and I. Tabus, Bounds on the size of Lee-codes, 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), (2013), 471–476.
doi: 10.1109/ISPA.2013.6703787.
|
[3]
|
J. Astola, On the asymptotic behaviour of Lee-codes, Discrete Applied Mathematics, 8 (1984), 13-23.
doi: 10.1016/0166-218X(84)90074-X.
|
[4]
|
M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi and P. Santini, A finite regime analysis of information set decoding algorithms, Algorithms, 12 (2019), Paper No. 209, 34 pp.
doi: 10.3390/a12100209.
|
[5]
|
S. Barg, Some new NP-complete coding problems, Problemy Peredachi Informatsii, 30 (1994), 23-28.
|
[6]
|
A. Becker, A. Joux, A. May and A. Meurer, Decoding random binary linear codes in $2^{n/20}$: How 1 + 1 = 0 improves information set decoding, Advances in Cryptology–EUROCRYPT 2012, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7237 (2012), 520-536.
doi: 10.1007/978-3-642-29011-4_31.
|
[7]
|
E. Berlekamp, Algebraic Coding Theory, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1968.
|
[8]
|
E. R. Berlekamp, R. J. McEliece and H. C. A. van Tilborg, On the inherent intractability of certain coding problems, IEEE Trans. on Inf. Theory, 24 (1978), 384-386.
doi: 10.1109/tit.1978.1055873.
|
[9]
|
D. J. Bernstein, T. Lange and C. Peters, Smaller decoding exponents: Ball-collision decoding, Advances in Cryptology—CRYPTO 2011, Lecture Notes in Comput. Sci., Springer, Heidelberg, 6841 (2011), 743-760.
doi: 10.1007/978-3-642-22792-9_42.
|
[10]
|
E. Byrne, A.-L. Horlemann, K. Khathuria and V. Weger, Density of free modules over finite chain rings, preprint, (2021), arXiv: 2106.09403.
|
[11]
|
A. Canteaut and F. Chabaud, A new algorithm for finding minimum-weight words in a linear code: Application to McEliece's cryptosystem and to narrow-sense BCH codes of length 511, IEEE Trans. on Inf. Theory, 44 (1998), 367-378.
doi: 10.1109/18.651067.
|
[12]
|
A. Canteaut and N. Sendrier, Cryptanalysis of the original McEliece cryptosystem, Advances in Cryptology–ASIACRYPT'98 (Beijing), Lecture Notes in Comput. Sci., Springer, Berlin, 1514 (1998), 187-199.
doi: 10.1007/3-540-49649-1_16.
|
[13]
|
F. Chabaud, Asymptotic analysis of probabilistic algorithms for finding short codewords, Eurocode '92 (Udine, 1992), CISM Courses and Lect., Springer, Vienna, 339 (1993), 175-183.
|
[14]
|
A. Chailloux, T. Debris-Alazard and S. Etinski, Classical and quantum algorithms for generic syndrome decoding problems and applications to the Lee metric, Post-Quantum Cryptography, Lecture Notes in Comput. Sci., Springer, Cham, 12841 (2021), 44–62, arXiv: 2104.12810.
doi: 10.1007/978-3-030-81293-5_3.
|
[15]
|
L. Chen, Y.-K. Liu, S. Jordan, D. Moody, R. Peralta, R. Perlner and D. Smith-Tone, Report on Post-Quantum Cryptography, Technical Report NISTIR 8105, National Institute of Standards and Technology, 2016.
doi: 10.6028/NIST.IR.8105.
|
[16]
|
A. Fiat and A. Shamir, How to prove yourself: Practical solutions to identification and signature problems, Advances in Cryptology—CRYPTO '86 (Santa Barbara, Calif., 1986), Lecture Notes in Comput. Sci., Springer, Berlin, 263 (1987), 186-194.
doi: 10.1007/3-540-47721-7_12.
|
[17]
|
M. Finiasz and N. Sendrier, Security bounds for the design of code-based cryptosystems, International Conference on the Theory and Application of Cryptology and Information Security, (2009), 88-105.
doi: 10.1007/978-3-642-10366-7_6.
|
[18]
|
P. Gaborit and G. Zémor, On the hardness of the decoding and the minimum distance problems for rank codes, IEEE Trans. on Inf. Theory, 62 (2016), 7245-7252.
doi: 10.1109/TIT.2016.2616127.
|
[19]
|
D. Gardy and P. Solé, Saddle point techniques in asymptotic coding theory, Algebraic Coding (Paris, 1991), Lecture Notes in Comput. Sci., Springer, Berlin, 573 (1992), 75-81.
doi: 10.1007/BFb0034343.
|
[20]
|
C. T. Gueye, J. B. Klamti and S. Hirose, Generalization of BJMM-ISD using May-Ozerov nearest neighbor algorithm over an arbitrary finite field $\mathbb{F}_q$, Codes, Cryptology and Information Security, Lecture Notes in Comput. Sci., Springer, Cham, 10194 (2017), 96-109.
doi: 10.1007/978-3-319-55589-8.
|
[21]
|
S. Hirose, May-Ozerov algorithm for nearest-neighbor problem over $\mathbb{F}_q$ and its application to information set decoding, International Conference for Information Technology and Communications, (2016), 115-126.
|
[22]
|
A.-L. Horlemann-Trautmann and V. Weger, Information set decoding in the Lee metric with applications to cryptography, Adv. Math. Commun., 15 (2021), 677.
doi: 10.3934/amc.2020089.
|
[23]
|
Wolfram Research, Inc., Mathematica, Version 12.3.1., Champaign, IL, 2021.
|
[24]
|
C. Interlando, K. Khathuria, N. Rohrer, J. Rosenthal and V. Weger, Generalization of the ball-collision algorithm, J. Algebra Comb. Discrete Struct. Appl., 7 (2020), 195-207.
doi: 10.13069/jacodesmath.729477.
|
[25]
|
C. Y. Lee, Some properties of nonbinary error-correcting codes, IRE Trans. Inf. Theory, IT-4 (1958), 77-82.
doi: 10.1109/tit.1958.1057446.
|
[26]
|
P. J. Lee and E. F. Brickell, An observation on the security of McEliece's public-key cryptosystem, Advances in Cryptology—EUROCRYPT '88 (Davos, 1988), Lecture Notes in Comput. Sci., Springer, Berlin, 330 (1988), 275-280.
doi: 10.1007/3-540-45961-8_25.
|
[27]
|
J. S. Leon, A probabilistic algorithm for computing minimum weights of large error-correcting codes, IEEE Trans. on Inf. Theory, 34 (1988), part 2, 1354–1359.
doi: 10.1109/18.21270.
|
[28]
|
A. May, A. Meurer and E. Thomae, Decoding random linear codes in $\tilde{\mathcal{O}}(2^{0.054 n})$, Advances in Cryptology—ASIACRYPT 2011, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7073 (2011), 107-124.
doi: 10.1007/978-3-642-25385-0_6.
|
[29]
|
R. McEliece, A public-key cryptosystem based on algebraic coding theory, DSN Progress Report, (1978), 114-116.
|
[30]
|
A. Meurer, A Coding-Theoretic Approach to Cryptanalysis, PhD thesis, Ruhr Universität Bochum, 2013.
|
[31]
|
R. Niebuhr, E. Persichetti, P.-L. Cayrel, S. Bulygin and J. Buchmann, On lower bounds for information set decoding over $\mathbb{F}_q$ and on the effect of partial knowledge, Int. J. Inf. Coding Theory, 4 (2017), 47-78.
doi: 10.1504/IJICOT.2017.081458.
|
[32]
|
H. Niederreiter, Knapsack-type cryptosystems and algebraic coding theory, Problems Control Inform. Theory/Problemy Upravlen. Teor. Inform., 15 (1986), 159-166.
|
[33]
|
C. Peters, Information-set decoding for linear codes over $\mathbb{F}_q$, Post-Quantum Cryptography, Lecture Notes in Comput. Sci., Springer, Berlin, 6061 (2010), 81-94.
doi: 10.1007/978-3-642-12929-2_7.
|
[34]
|
E. Prange, The use of information sets in decoding cyclic codes, IRE Trans. Inf. Theory, IT-8 (1962), 5-9.
doi: 10.1109/tit.1962.1057777.
|
[35]
|
S. Puchinger, J. Renner and J. Rosenkilde, Generic decoding in the sum-rank metric, 2020 IEEE International Symposium on Information Theory (ISIT), (2020), 54–59.
|
[36]
|
P. Santini, M. Battaglioni, F. Chiaraluce, M. Baldi and E. Persichetti, Low-Lee-density parity-check codes, ICC 2020 - 2020 IEEE International Conference on Communications (ICC), (2020), 1–6.
|
[37]
|
J. Stern, A method for finding codewords of small weight, Coding theory and applications (Toulon, 1988), Lecture Notes in Comput. Sci., Springer, New York, 388 (1989), 106-113.
doi: 10.1007/BFb0019850.
|
[38]
|
J. Stern, A new identification scheme based on syndrome decoding, Advances in Cryptology–CRYPTO' 93, (1994), 13–21.
doi: 10.1007/3-540-48329-2_2.
|
[39]
|
The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.4), 2018, https://www.sagemath.org.
|
[40]
|
W. Ulrich, Non-binary error correction codes, The Bell System Technical Journal, 36 (1957), 1341-1388.
|
[41]
|
D. Wagner, A generalized birthday problem, Advances in Cryptology—CRYPTO 2002, Lecture Notes in Comput. Sci., Springer, Berlin, 2442 (2002), 288-303.
doi: 10.1007/3-540-45708-9_19.
|