doi: 10.3934/amc.2022030
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Low-density and high-density asymmetric CT-burst correcting integer codes

Department of Mathematical Sciences, Tezpur University, Napaam, Sonitpur, Assam-784028, India

* Corresponding author: Pankaj Kumar Das

Received  September 2021 Revised  March 2022 Early access April 2022

Fund Project: The first author is supported by the University Grants Commission, India (Ref. No: 1112/(CSIR-UGC NET JUNE 2017))

Two classes of integer codes correcting low-density and high-density asymmetric CT-bursts within a $ b $-bit byte have been presented here. Unlike the previously studied integer codes correcting burst errors, here we study such codes with weight constraint on the burst. The proposed codes are compared with similar integer codes in terms of various properties, viz. memory consumption and number of table look ups. This article winds up with an idea of determining the probability of erroneous decoding and an approach for undetected error probability.

Citation: Nabin Kumar Pokhrel, Pankaj Kumar Das. Low-density and high-density asymmetric CT-burst correcting integer codes. Advances in Mathematics of Communications, doi: 10.3934/amc.2022030
References:
[1]

I. F. Blake, Codes over certain rings, Information and Control, 20 (1972), 396-404.  doi: 10.1016/S0019-9958(72)90223-9.

[2]

I. F. Blake, Codes over integer residue rings, Information and Control, 29 (1975), 295-300.  doi: 10.1016/S0019-9958(75)80001-5.

[3]

B. BuccimazzaB. K. Dass and S. Jain, High-density-burst error detection, Journal of Discrete Mathematical Sciences and Cryptography, 7 (2004), 5-21.  doi: 10.1080/09720529.2004.10697984.

[4]

D. Burton, Elementary Number Theory, 7$^{th}$ Edition, Mcgraw-Hill, 2011.

[5]

R. T. Chien and D. T. Tang, On definitions of a burst, IBM Journal of Research and Development, 9 (1965), 292-293.  doi: 10.1147/rd.94.0292.

[6]

P. K. Das and N. K. Pokhrel, Asymmetric CT-burst correcting integer codes, 2021 5th International Conference on Information Systems and Computer Networks (ISCON), Mathura, India, (2021), 1–5.

[7]

B. K. DassF. Eugeni and S. Innamorati, Low-Density burst error locating/correcting linear codes, Journal of Information and Optimization Sciences, 16 (1995), 533-548.  doi: 10.1080/02522667.1995.10699249.

[8]

B. K. DassG. Sobha and M. Zannetti, High-density CT burst error-locating linear codes, Journal of Interdisciplinary Mathematics, 5 (2002), 243-249.  doi: 10.1080/09720502.2002.10700320.

[9]

P. Fire, A Class of Multiple-Error-Correcting Binary Codes for Non-Independent Errors, Sylvania Report RSL-E-2, Sylvania Reconnaissance Systems Laboratory, Mountain View, California, 1959.

[10]

T. Klove, Error Correcting Codes for the Asymmetric Channel, Technical Report $18-09-07-81$, Norway: Department of Informatics, University of Bergen, 1981.

[11]

H. Kostadinov and N. Manev, Integer codes correcting asymmetric errors in nand flash memories, Mathematics, 9 (2021), 1269.  doi: 10.3390/math9111269.

[12]

H. KostadinovH. Morita and N. Manev, Derivation on bit error probability of coded QAM using integer codes, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E87-A (2004), 3397-3403. 

[13]

H. KostadinovH. Morita and N. Manev, On ($\pm$1) error correctable integer codes, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E93-A (2010), 2758-2761. 

[14]

V. I. Levenshteĭn and A. J. H. Vinck, Perfect (d, k) codes capable of correcting single peak-shifts, IEEE Transactions on Information Theory, 39 (1993), 656-662.  doi: 10.1109/18.212300.

[15]

K. Mehlhorn and P. Sanders, Algorithms and Data Structures: The Basic Toolbox, Springer-Verlag, Berlin, 2008.

[16]

S. Park and B. Bose, Burst asymmetric/unidirectional error correcting/detecting codes, Digest of Papers. Fault-Tolerant Computing: 20th International Symposium, (1992), 273–280.

[17] W. W. Peterson and E. J. Weldon. Jr., Error-Correcting Codes, Second edition, The M.I.T. Press, Cambridge, Mass.-London, 1972. 
[18]

A. Radonjic, Integer codes correcting single asymmetric errors, Annals of Telecommunications, 76 (2021), 109-113. 

[19]

A. Radonjic and V. Vujicic, Integer codes correcting burst errors within a byte, IEEE Transactions on Computers, 62 (2013), 411-415.  doi: 10.1109/TC.2011.243.

[20]

A. Radonjic and V. Vujicic, Integer codes correcting spotty byte asymmetric errors, IEEE Communications Letters, 20 (2016), 2338-2341. 

[21]

A. Radonjic and V. Vujicic, Integer codes correcting single errors and burst asymmetric errors within a byte, Inform. Process. Lett., 121 (2017), 45-50.  doi: 10.1016/j.ipl.2017.01.010.

[22]

A. Radonjic and V. Vujicic, Integer codes correcting burst and random asymmetric errors within a byte, Journal of the Franklin Institute, 355 (2018), 981-996.  doi: 10.1016/j.jfranklin.2017.11.033.

[23]

A. Radonjic and V. Vujicic, Integer codes correcting burst asymmetric errors within a byte and double asymmetric errors, Cryptography and Communications, 12 (2020), 221-230.  doi: 10.1007/s12095-019-00388-0.

[24]

R. R. Varshamov and G. M. Tenengolz, One asymmetrical error-correcting codes, Avtomatika i Telemehanika, 26 (1965), 288-292. 

[25]

A. J. H. Vinck and H. Morita, Codes over the ring of integer modulom, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 81A (1998), 2013-2018. 

[26]

A. D. Wyner, Low-density-burst-correcting codes, IEEE Transactions on Information Theory, IT-9 (1963), 124. 

show all references

References:
[1]

I. F. Blake, Codes over certain rings, Information and Control, 20 (1972), 396-404.  doi: 10.1016/S0019-9958(72)90223-9.

[2]

I. F. Blake, Codes over integer residue rings, Information and Control, 29 (1975), 295-300.  doi: 10.1016/S0019-9958(75)80001-5.

[3]

B. BuccimazzaB. K. Dass and S. Jain, High-density-burst error detection, Journal of Discrete Mathematical Sciences and Cryptography, 7 (2004), 5-21.  doi: 10.1080/09720529.2004.10697984.

[4]

D. Burton, Elementary Number Theory, 7$^{th}$ Edition, Mcgraw-Hill, 2011.

[5]

R. T. Chien and D. T. Tang, On definitions of a burst, IBM Journal of Research and Development, 9 (1965), 292-293.  doi: 10.1147/rd.94.0292.

[6]

P. K. Das and N. K. Pokhrel, Asymmetric CT-burst correcting integer codes, 2021 5th International Conference on Information Systems and Computer Networks (ISCON), Mathura, India, (2021), 1–5.

[7]

B. K. DassF. Eugeni and S. Innamorati, Low-Density burst error locating/correcting linear codes, Journal of Information and Optimization Sciences, 16 (1995), 533-548.  doi: 10.1080/02522667.1995.10699249.

[8]

B. K. DassG. Sobha and M. Zannetti, High-density CT burst error-locating linear codes, Journal of Interdisciplinary Mathematics, 5 (2002), 243-249.  doi: 10.1080/09720502.2002.10700320.

[9]

P. Fire, A Class of Multiple-Error-Correcting Binary Codes for Non-Independent Errors, Sylvania Report RSL-E-2, Sylvania Reconnaissance Systems Laboratory, Mountain View, California, 1959.

[10]

T. Klove, Error Correcting Codes for the Asymmetric Channel, Technical Report $18-09-07-81$, Norway: Department of Informatics, University of Bergen, 1981.

[11]

H. Kostadinov and N. Manev, Integer codes correcting asymmetric errors in nand flash memories, Mathematics, 9 (2021), 1269.  doi: 10.3390/math9111269.

[12]

H. KostadinovH. Morita and N. Manev, Derivation on bit error probability of coded QAM using integer codes, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E87-A (2004), 3397-3403. 

[13]

H. KostadinovH. Morita and N. Manev, On ($\pm$1) error correctable integer codes, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E93-A (2010), 2758-2761. 

[14]

V. I. Levenshteĭn and A. J. H. Vinck, Perfect (d, k) codes capable of correcting single peak-shifts, IEEE Transactions on Information Theory, 39 (1993), 656-662.  doi: 10.1109/18.212300.

[15]

K. Mehlhorn and P. Sanders, Algorithms and Data Structures: The Basic Toolbox, Springer-Verlag, Berlin, 2008.

[16]

S. Park and B. Bose, Burst asymmetric/unidirectional error correcting/detecting codes, Digest of Papers. Fault-Tolerant Computing: 20th International Symposium, (1992), 273–280.

[17] W. W. Peterson and E. J. Weldon. Jr., Error-Correcting Codes, Second edition, The M.I.T. Press, Cambridge, Mass.-London, 1972. 
[18]

A. Radonjic, Integer codes correcting single asymmetric errors, Annals of Telecommunications, 76 (2021), 109-113. 

[19]

A. Radonjic and V. Vujicic, Integer codes correcting burst errors within a byte, IEEE Transactions on Computers, 62 (2013), 411-415.  doi: 10.1109/TC.2011.243.

[20]

A. Radonjic and V. Vujicic, Integer codes correcting spotty byte asymmetric errors, IEEE Communications Letters, 20 (2016), 2338-2341. 

[21]

A. Radonjic and V. Vujicic, Integer codes correcting single errors and burst asymmetric errors within a byte, Inform. Process. Lett., 121 (2017), 45-50.  doi: 10.1016/j.ipl.2017.01.010.

[22]

A. Radonjic and V. Vujicic, Integer codes correcting burst and random asymmetric errors within a byte, Journal of the Franklin Institute, 355 (2018), 981-996.  doi: 10.1016/j.jfranklin.2017.11.033.

[23]

A. Radonjic and V. Vujicic, Integer codes correcting burst asymmetric errors within a byte and double asymmetric errors, Cryptography and Communications, 12 (2020), 221-230.  doi: 10.1007/s12095-019-00388-0.

[24]

R. R. Varshamov and G. M. Tenengolz, One asymmetrical error-correcting codes, Avtomatika i Telemehanika, 26 (1965), 288-292. 

[25]

A. J. H. Vinck and H. Morita, Codes over the ring of integer modulom, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 81A (1998), 2013-2018. 

[26]

A. D. Wyner, Low-density-burst-correcting codes, IEEE Transactions on Information Theory, IT-9 (1963), 124. 

Figure 1.  Z-Channel
Figure 2.  Width presentation of an encoded codeword
Figure 3.  Width of each syndrome entry
Figure 4.  Code rate vs BER and probability (low-density)
Figure 6.  Code rate vs BER and probability (high-density)
Table 1.  $LUT_2$ for integer $(16, 8) LACTB_{(3/6, 8)}C$ code
Sl.No. Syndrome ($S_1$) Error Loc.($i$) Error($e$) Sl.No. Syndrome($S_1$) Error Loc.($i$) Error($e$)
1 1 2 1 49 107 1 74
2 2 2 2 50 115 1 70
3 3 2 3 51 118 1 196
4 4 2 4 52 119 1 68
5 5 2 5 53 123 1 66
6 6 2 6 54 132 2 132
7 7 2 7 55 140 2 140
8 9 2 9 56 148 2 148
9 10 2 10 57 151 1 52
10 11 2 11 58 155 1 50
11 12 2 12 59 157 1 49
12 13 2 13 60 164 2 164
13 14 2 14 61 167 1 44
14 17 2 17 62 171 1 42
15 18 2 18 63 173 1 41
16 19 2 19 64 179 1 38
17 20 2 20 65 181 1 37
18 21 2 21 66 182 1 164
19 22 2 22 67 183 1 36
20 25 2 25 68 185 1 35
21 26 2 26 69 187 1 34
22 28 2 28 70 189 1 33
23 33 2 33 71 196 2 196
24 34 2 34 72 199 1 28
25 35 2 35 73 203 1 26
26 36 2 36 74 205 1 25
27 37 2 37 75 211 1 22
28 38 2 38 76 213 1 21
29 41 2 41 77 214 1 148
30 42 2 42 78 215 1 20
31 44 2 44 79 217 1 19
32 49 2 49 80 219 1 18
33 50 2 50 81 221 1 17
34 52 2 52 82 227 1 14
35 55 1 100 83 229 1 13
36 59 1 98 84 230 1 140
37 66 2 66 85 231 1 12
38 68 2 68 86 233 1 11
39 70 2 70 87 235 1 10
40 74 2 74 88 237 1 9
41 76 2 76 89 241 1 7
42 82 2 82 90 243 1 6
43 84 2 84 91 245 1 5
44 87 1 84 92 246 1 132
45 91 1 82 93 247 1 4
46 98 2 98 94 249 1 3
47 100 2 100 95 251 1 2
48 103 1 76 96 253 1 1
Sl.No. Syndrome ($S_1$) Error Loc.($i$) Error($e$) Sl.No. Syndrome($S_1$) Error Loc.($i$) Error($e$)
1 1 2 1 49 107 1 74
2 2 2 2 50 115 1 70
3 3 2 3 51 118 1 196
4 4 2 4 52 119 1 68
5 5 2 5 53 123 1 66
6 6 2 6 54 132 2 132
7 7 2 7 55 140 2 140
8 9 2 9 56 148 2 148
9 10 2 10 57 151 1 52
10 11 2 11 58 155 1 50
11 12 2 12 59 157 1 49
12 13 2 13 60 164 2 164
13 14 2 14 61 167 1 44
14 17 2 17 62 171 1 42
15 18 2 18 63 173 1 41
16 19 2 19 64 179 1 38
17 20 2 20 65 181 1 37
18 21 2 21 66 182 1 164
19 22 2 22 67 183 1 36
20 25 2 25 68 185 1 35
21 26 2 26 69 187 1 34
22 28 2 28 70 189 1 33
23 33 2 33 71 196 2 196
24 34 2 34 72 199 1 28
25 35 2 35 73 203 1 26
26 36 2 36 74 205 1 25
27 37 2 37 75 211 1 22
28 38 2 38 76 213 1 21
29 41 2 41 77 214 1 148
30 42 2 42 78 215 1 20
31 44 2 44 79 217 1 19
32 49 2 49 80 219 1 18
33 50 2 50 81 221 1 17
34 52 2 52 82 227 1 14
35 55 1 100 83 229 1 13
36 59 1 98 84 230 1 140
37 66 2 66 85 231 1 12
38 68 2 68 86 233 1 11
39 70 2 70 87 235 1 10
40 74 2 74 88 237 1 9
41 76 2 76 89 241 1 7
42 82 2 82 90 243 1 6
43 84 2 84 91 245 1 5
44 87 1 84 92 246 1 132
45 91 1 82 93 247 1 4
46 98 2 98 94 249 1 3
47 100 2 100 95 251 1 2
48 103 1 76 96 253 1 1
Table 2.  $LUT_2$ for an integer $HACTB_{(2/4, 8)}C$ code
Sl.No. Syndrome($S_2$) Error Loc.($i$) Error($e$) Sl.No. Syndrome($S_2$) Error Loc.($i$) Error($e$)
1 3 2 3 36 76 1 14
2 5 2 5 37 77 1 88
3 6 2 6 38 80 2 80
4 7 2 7 39 83 1 22
5 9 2 9 40 88 2 88
6 10 2 10 41 90 1 30
7 11 2 11 42 91 1 104
8 12 2 12 43 98 1 112
9 13 2 13 44 100 1 5
10 14 2 14 45 104 2 104
11 15 2 15 46 105 1 120
12 18 2 18 47 107 1 13
13 20 2 20 48 112 2 112
14 21 1 24 49 120 2 120
15 22 2 22 50 126 1 144
16 24 2 24 51 138 1 12
17 26 2 26 52 144 2 144
18 28 2 28 53 145 1 20
19 30 2 30 54 152 1 28
20 35 1 40 55 154 1 176
21 36 2 36 56 159 1 36
22 38 1 7 57 162 1 3
23 40 2 40 58 166 1 44
24 42 1 48 59 169 1 11
25 44 2 44 60 173 1 52
26 45 1 15 61 176 2 176
27 48 2 48 62 180 1 60
28 49 1 56 63 182 1 208
29 52 2 52 64 200 1 10
30 56 2 56 65 207 1 18
31 60 2 60 66 208 2 208
32 63 1 72 67 210 1 240
33 69 1 6 68 214 1 26
34 70 1 80 69 231 1 9
35 72 2 72 70 240 2 240
Sl.No. Syndrome($S_2$) Error Loc.($i$) Error($e$) Sl.No. Syndrome($S_2$) Error Loc.($i$) Error($e$)
1 3 2 3 36 76 1 14
2 5 2 5 37 77 1 88
3 6 2 6 38 80 2 80
4 7 2 7 39 83 1 22
5 9 2 9 40 88 2 88
6 10 2 10 41 90 1 30
7 11 2 11 42 91 1 104
8 12 2 12 43 98 1 112
9 13 2 13 44 100 1 5
10 14 2 14 45 104 2 104
11 15 2 15 46 105 1 120
12 18 2 18 47 107 1 13
13 20 2 20 48 112 2 112
14 21 1 24 49 120 2 120
15 22 2 22 50 126 1 144
16 24 2 24 51 138 1 12
17 26 2 26 52 144 2 144
18 28 2 28 53 145 1 20
19 30 2 30 54 152 1 28
20 35 1 40 55 154 1 176
21 36 2 36 56 159 1 36
22 38 1 7 57 162 1 3
23 40 2 40 58 166 1 44
24 42 1 48 59 169 1 11
25 44 2 44 60 173 1 52
26 45 1 15 61 176 2 176
27 48 2 48 62 180 1 60
28 49 1 56 63 182 1 208
29 52 2 52 64 200 1 10
30 56 2 56 65 207 1 18
31 60 2 60 66 208 2 208
32 63 1 72 67 210 1 240
33 69 1 6 68 214 1 26
34 70 1 80 69 231 1 9
35 72 2 72 70 240 2 240
Table 3.  First 32 possible coefficients for integer $LACTB_{({d/l, b})}C$ codes
$b$ ${l}$ $\lfloor \frac{{l}}{2} \rfloor$ Coefficients
7 5 2 2, 33, 47,100
8 4 2 2
8 6 3 2
10 4 2 2, 7, 13, 15, 23, 37, 41, 47, 49, 83
10 6 3 2,135
10 7 3 2
16 4 2 2, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 81, 83, 89, 91, 97,101,105,107,109
16 5 2 2, 7, 11, 13, 15, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 67, 71, 73, 77, 79, 81, 83, 89, 97,101,105,107,109,121,125,127
16 6 3 2, 15, 23, 29, 31, 43, 47, 53, 59, 67, 71, 73, 77, 79, 83, 89, 97,101,107,117,131,137,139,149,157,163,167,181,199,227,233,251
16 8 4 2, 31, 61,207,776, 7769
16 9 4 2, 31,413, 1536, 16904
32 6 3 2, 15, 23, 29, 31, 43, 47, 53, 59, 61, 67, 71, 73, 77, 79, 81, 83, 89, 97,101,103,107,109,113,127,131,137,139,149,151,157,163
32 7 3 2, 15, 29, 31, 43, 47, 53, 59, 61, 71, 77, 79, 83, 89,101,103,107,109,113,117,127,131,137,139,149,151,157,163,167,173,179,181
32 8 4 2, 31, 61, 63, 79, 95,103,107,121,127,151,157,167,173,179,181,191,199,211,221,223,227,229,233,239,241,251,257,263,269,271,277
$b$ ${l}$ $\lfloor \frac{{l}}{2} \rfloor$ Coefficients
7 5 2 2, 33, 47,100
8 4 2 2
8 6 3 2
10 4 2 2, 7, 13, 15, 23, 37, 41, 47, 49, 83
10 6 3 2,135
10 7 3 2
16 4 2 2, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 81, 83, 89, 91, 97,101,105,107,109
16 5 2 2, 7, 11, 13, 15, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 67, 71, 73, 77, 79, 81, 83, 89, 97,101,105,107,109,121,125,127
16 6 3 2, 15, 23, 29, 31, 43, 47, 53, 59, 67, 71, 73, 77, 79, 83, 89, 97,101,107,117,131,137,139,149,157,163,167,181,199,227,233,251
16 8 4 2, 31, 61,207,776, 7769
16 9 4 2, 31,413, 1536, 16904
32 6 3 2, 15, 23, 29, 31, 43, 47, 53, 59, 61, 67, 71, 73, 77, 79, 81, 83, 89, 97,101,103,107,109,113,127,131,137,139,149,151,157,163
32 7 3 2, 15, 29, 31, 43, 47, 53, 59, 61, 71, 77, 79, 83, 89,101,103,107,109,113,117,127,131,137,139,149,151,157,163,167,173,179,181
32 8 4 2, 31, 61, 63, 79, 95,103,107,121,127,151,157,167,173,179,181,191,199,211,221,223,227,229,233,239,241,251,257,263,269,271,277
Table 4.  First 32 possible coefficients for integer $HACTB_{({h/l, b})}C$ codes
$b$ ${l}$ $\lceil \frac{{l}}{2} \rceil$ Coefficients
8 3 2 2, 3, 29, 37
8 4 2 31
8 5 3 239
10 4 2 2, 13, 41
10 6 3 991
10 5 3 7
16 5 3 2, 5, 11, 17, 35, 37, 39, 43, 47, 53, 59, 61, 67, 71, 73, 77, 79, 83, 97,101,107,113,119,127,131,137,149,151,157,163,169,173
16 6 3 2, 11, 67, 71, 73, 79, 95,103,129,137,179,193,217,267,293,311,327,373,389,393,449,461,517,725,761, 1001, 2501, 2527, 2999, 3481, 3643, 4517
16 7 4 2, 9, 43,131,139,163,183,197,199,209,251,491, 2477, 4727
16 8 4 7, 61, 22447
16 9 5 2389, 21769, 65279
32 6 3 2, 11, 17, 65, 67, 69, 71, 73, 79, 83, 89, 97,101,103,107,109,113,121,127,131,133,137,139,149,151,157,163,167,173,179,181,187
32 8 4 2, 19, 87, 97,131,137,161,193,257,263,265,269,271,277,281,283,289,293,307,311,313,317,331,337,341,347,349,353,359,361,367,373
32 9 5 2, 17, 47, 77,129,131,139,193,197,257,263,265,269,277,281,289,293,321,337,353,389,401,449,521,523,529,531,533,541,547,551,557
$b$ ${l}$ $\lceil \frac{{l}}{2} \rceil$ Coefficients
8 3 2 2, 3, 29, 37
8 4 2 31
8 5 3 239
10 4 2 2, 13, 41
10 6 3 991
10 5 3 7
16 5 3 2, 5, 11, 17, 35, 37, 39, 43, 47, 53, 59, 61, 67, 71, 73, 77, 79, 83, 97,101,107,113,119,127,131,137,149,151,157,163,169,173
16 6 3 2, 11, 67, 71, 73, 79, 95,103,129,137,179,193,217,267,293,311,327,373,389,393,449,461,517,725,761, 1001, 2501, 2527, 2999, 3481, 3643, 4517
16 7 4 2, 9, 43,131,139,163,183,197,199,209,251,491, 2477, 4727
16 8 4 7, 61, 22447
16 9 5 2389, 21769, 65279
32 6 3 2, 11, 17, 65, 67, 69, 71, 73, 79, 83, 89, 97,101,103,107,109,113,121,127,131,133,137,139,149,151,157,163,167,173,179,181,187
32 8 4 2, 19, 87, 97,131,137,161,193,257,263,265,269,271,277,281,283,289,293,307,311,313,317,331,337,341,347,349,353,359,361,367,373
32 9 5 2, 17, 47, 77,129,131,139,193,197,257,263,265,269,277,281,289,293,321,337,353,389,401,449,521,523,529,531,533,541,547,551,557
Table 5.  Lookup sizes for $LACTB_{({d/l, b})}C$ codes
Codes $b$ ${l}$ $ \lfloor \frac{{l}}{2} \rfloor$ $LUT_1$ size $LUT_2$ size No of table look ups
(144,128) 16 4 2 4$\times$ 16B 2.11 KB 1 $\leq \eta_{TL} \leq$ 10
(528,512) 16 5 2 4$\times$ 64B 9.41 KB 1 $\leq \eta_{TL} \leq$ 12
(512,480) 32 6 3 4$\times$ 60B 58.75 KB 1 $\leq \eta_{TL} \leq$ 14
(1056, 1024) 32 8 4 4$\times$ 128B 0.46 MB 1 $\leq \eta_{TL} \leq$ 17
Codes $b$ ${l}$ $ \lfloor \frac{{l}}{2} \rfloor$ $LUT_1$ size $LUT_2$ size No of table look ups
(144,128) 16 4 2 4$\times$ 16B 2.11 KB 1 $\leq \eta_{TL} \leq$ 10
(528,512) 16 5 2 4$\times$ 64B 9.41 KB 1 $\leq \eta_{TL} \leq$ 12
(512,480) 32 6 3 4$\times$ 60B 58.75 KB 1 $\leq \eta_{TL} \leq$ 14
(1056, 1024) 32 8 4 4$\times$ 128B 0.46 MB 1 $\leq \eta_{TL} \leq$ 17
Table 6.  Lookup sizes for $HACTB_{({h/l, b})}C$ codes
Codes $b$ ${l}$ $\lceil \frac{{l}}{2}\rceil $ $LUT_1$ size $LUT_2$ size No of table look ups
$(240,224)$ $16$ $7$ $4$ $4 \times 28$ B $28.35$ KB $1 \leq \eta_{TL} \leq 14$
$(512,496)$ $16$ $6$ $3$ $4 \times 62$ B $42.33$ KB $1 \leq \eta_{TL} \leq 15$
$(544,512)$ $32$ $6$ $3$ $4 \times 64$ B $0.1$ MB $1 \leq \eta_{TL} \leq 15$
$(1056, 1024)$ $32$ $8$ $4$ $4 \times 128$ B $0.71$ MB $1 \leq \eta_{TL} \leq 18$
Codes $b$ ${l}$ $\lceil \frac{{l}}{2}\rceil $ $LUT_1$ size $LUT_2$ size No of table look ups
$(240,224)$ $16$ $7$ $4$ $4 \times 28$ B $28.35$ KB $1 \leq \eta_{TL} \leq 14$
$(512,496)$ $16$ $6$ $3$ $4 \times 62$ B $42.33$ KB $1 \leq \eta_{TL} \leq 15$
$(544,512)$ $32$ $6$ $3$ $4 \times 64$ B $0.1$ MB $1 \leq \eta_{TL} \leq 15$
$(1056, 1024)$ $32$ $8$ $4$ $4 \times 128$ B $0.71$ MB $1 \leq \eta_{TL} \leq 18$
Table 7.  Comparison of some integer codes with $32$ information bytes
Codes Error pattern $b$ ${l}$ $LUT_2$ size $\#$ table look ups
$LACTB_{(\textit{d/l, }b)}C$ Proposed low-density 32 8 0.46 MB 1 $\leq \eta_{TL} \leq $ 17
$HACTB_{(\textit{h/l}, b)}C$ Proposed high-density 32 8 0.71 MB 1 $\leq \eta_{TL} \leq $ 18
$(CT_{\textit{l}}B)_b$ from [6] Asymmetric CT-bursts 32 8 0.96 MB 1 $\leq \eta_{TL} \leq $ 18
From [19] Symmetric bursts 32 8 3.84 MB 1 $\leq \eta_{TL} \leq $ 20
From [22] Bursts and random asymmetric 32 8 2.32 MB 1 $\leq \eta_{TL} \leq $ 20
From [23] Asymmetric bursts and double random asymmetric 32 8 8.91 MB 1 $\leq \eta_{TL} \leq $ 21
Codes Error pattern $b$ ${l}$ $LUT_2$ size $\#$ table look ups
$LACTB_{(\textit{d/l, }b)}C$ Proposed low-density 32 8 0.46 MB 1 $\leq \eta_{TL} \leq $ 17
$HACTB_{(\textit{h/l}, b)}C$ Proposed high-density 32 8 0.71 MB 1 $\leq \eta_{TL} \leq $ 18
$(CT_{\textit{l}}B)_b$ from [6] Asymmetric CT-bursts 32 8 0.96 MB 1 $\leq \eta_{TL} \leq $ 18
From [19] Symmetric bursts 32 8 3.84 MB 1 $\leq \eta_{TL} \leq $ 20
From [22] Bursts and random asymmetric 32 8 2.32 MB 1 $\leq \eta_{TL} \leq $ 20
From [23] Asymmetric bursts and double random asymmetric 32 8 8.91 MB 1 $\leq \eta_{TL} \leq $ 21
[1]

Subhabrata Samajder, Palash Sarkar. Another look at success probability of linear cryptanalysis. Advances in Mathematics of Communications, 2019, 13 (4) : 645-688. doi: 10.3934/amc.2019040

[2]

Louis Caccetta, Syarifah Z. Nordin. Mixed integer programming model for scheduling in unrelated parallel processor system with priority consideration. Numerical Algebra, Control and Optimization, 2014, 4 (2) : 115-132. doi: 10.3934/naco.2014.4.115

[3]

Martianus Frederic Ezerman, San Ling, Patrick Solé, Olfa Yemen. From skew-cyclic codes to asymmetric quantum codes. Advances in Mathematics of Communications, 2011, 5 (1) : 41-57. doi: 10.3934/amc.2011.5.41

[4]

Neal Koblitz, Alfred Menezes. Another look at security definitions. Advances in Mathematics of Communications, 2013, 7 (1) : 1-38. doi: 10.3934/amc.2013.7.1

[5]

Neal Koblitz, Alfred Menezes. Another look at generic groups. Advances in Mathematics of Communications, 2007, 1 (1) : 13-28. doi: 10.3934/amc.2007.1.13

[6]

Johan Rosenkilde. Power decoding Reed-Solomon codes up to the Johnson radius. Advances in Mathematics of Communications, 2018, 12 (1) : 81-106. doi: 10.3934/amc.2018005

[7]

Tsonka Baicheva. All binary linear codes of lengths up to 18 or redundancy up to 10 are normal. Advances in Mathematics of Communications, 2011, 5 (4) : 681-686. doi: 10.3934/amc.2011.5.681

[8]

Vladimir Dragović, Katarina Kukić. Discriminantly separable polynomials and quad-equations. Journal of Geometric Mechanics, 2014, 6 (3) : 319-333. doi: 10.3934/jgm.2014.6.319

[9]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Dead cores and bursts for p-Laplacian elliptic equations with weights. Conference Publications, 2007, 2007 (Special) : 191-200. doi: 10.3934/proc.2007.2007.191

[10]

Zhiguo Feng, Ka-Fai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial and Management Optimization, 2014, 10 (2) : 557-566. doi: 10.3934/jimo.2014.10.557

[11]

Jinlong Guo, Bin Li, Yuandong Ji. A control parametrization based path planning method for the quad-rotor uavs. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1079-1100. doi: 10.3934/jimo.2021009

[12]

Dean Crnković, Marija Maksimović, Bernardo Gabriel Rodrigues, Sanja Rukavina. Self-orthogonal codes from the strongly regular graphs on up to 40 vertices. Advances in Mathematics of Communications, 2016, 10 (3) : 555-582. doi: 10.3934/amc.2016026

[13]

Ken Saito. Self-dual additive $ \mathbb{F}_4 $-codes of lengths up to 40 represented by circulant graphs. Advances in Mathematics of Communications, 2019, 13 (2) : 213-220. doi: 10.3934/amc.2019014

[14]

Markus Kunze. A second look at the Kurth solution in galactic dynamics. Kinetic and Related Models, 2022, 15 (4) : 651-662. doi: 10.3934/krm.2021028

[15]

Marek Bodnar, Urszula Foryś. Time Delay In Necrotic Core Formation. Mathematical Biosciences & Engineering, 2005, 2 (3) : 461-472. doi: 10.3934/mbe.2005.2.461

[16]

Apostolis Pavlou. Asymmetric information in a bilateral monopoly. Journal of Dynamics and Games, 2016, 3 (2) : 169-189. doi: 10.3934/jdg.2016009

[17]

Armands Gritsans, Felix Sadyrbaev. The Nehari solutions and asymmetric minimizers. Conference Publications, 2015, 2015 (special) : 562-568. doi: 10.3934/proc.2015.0562

[18]

Jayadev S. Athreya, Gregory A. Margulis. Values of random polynomials at integer points. Journal of Modern Dynamics, 2018, 12: 9-16. doi: 10.3934/jmd.2018002

[19]

Emile Franc Doungmo Goufo, Melusi Khumalo, Patrick M. Tchepmo Djomegni. Perturbations of Hindmarsh-Rose neuron dynamics by fractional operators: Bifurcation, firing and chaotic bursts. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 663-682. doi: 10.3934/dcdss.2020036

[20]

Sherif I. Ammar, Alexander Zeifman, Yacov Satin, Ksenia Kiseleva, Victor Korolev. On limiting characteristics for a non-stationary two-processor heterogeneous system with catastrophes, server failures and repairs. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1057-1068. doi: 10.3934/jimo.2020011

2021 Impact Factor: 1.015

Metrics

  • PDF downloads (169)
  • HTML views (74)
  • Cited by (0)

Other articles
by authors

[Back to Top]