
-
Previous Article
Z-complementary pairs with flexible lengths and large zero odd-periodic correlation zones
- AMC Home
- This Issue
-
Next Article
Minimal codewords arising from the incidence of points and hyperplanes in projective spaces
Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Online First articles via the “Online First” tab for the selected journal.
Low-density and high-density asymmetric CT-burst correcting integer codes
Department of Mathematical Sciences, Tezpur University, Napaam, Sonitpur, Assam-784028, India |
Two classes of integer codes correcting low-density and high-density asymmetric CT-bursts within a $ b $-bit byte have been presented here. Unlike the previously studied integer codes correcting burst errors, here we study such codes with weight constraint on the burst. The proposed codes are compared with similar integer codes in terms of various properties, viz. memory consumption and number of table look ups. This article winds up with an idea of determining the probability of erroneous decoding and an approach for undetected error probability.
References:
[1] |
I. F. Blake,
Codes over certain rings, Information and Control, 20 (1972), 396-404.
doi: 10.1016/S0019-9958(72)90223-9. |
[2] |
I. F. Blake,
Codes over integer residue rings, Information and Control, 29 (1975), 295-300.
doi: 10.1016/S0019-9958(75)80001-5. |
[3] |
B. Buccimazza, B. K. Dass and S. Jain,
High-density-burst error detection, Journal of Discrete Mathematical Sciences and Cryptography, 7 (2004), 5-21.
doi: 10.1080/09720529.2004.10697984. |
[4] |
D. Burton, Elementary Number Theory, 7$^{th}$ Edition, Mcgraw-Hill, 2011. |
[5] |
R. T. Chien and D. T. Tang,
On definitions of a burst, IBM Journal of Research and Development, 9 (1965), 292-293.
doi: 10.1147/rd.94.0292. |
[6] |
P. K. Das and N. K. Pokhrel, Asymmetric CT-burst correcting integer codes, 2021 5th International Conference on Information Systems and Computer Networks (ISCON), Mathura, India, (2021), 1–5. |
[7] |
B. K. Dass, F. Eugeni and S. Innamorati,
Low-Density burst error locating/correcting linear codes, Journal of Information and Optimization Sciences, 16 (1995), 533-548.
doi: 10.1080/02522667.1995.10699249. |
[8] |
B. K. Dass, G. Sobha and M. Zannetti,
High-density CT burst error-locating linear codes, Journal of Interdisciplinary Mathematics, 5 (2002), 243-249.
doi: 10.1080/09720502.2002.10700320. |
[9] |
P. Fire, A Class of Multiple-Error-Correcting Binary Codes for Non-Independent Errors, Sylvania Report RSL-E-2, Sylvania Reconnaissance Systems Laboratory, Mountain View, California, 1959. |
[10] |
T. Klove, Error Correcting Codes for the Asymmetric Channel, Technical Report $18-09-07-81$, Norway: Department of Informatics, University of Bergen, 1981. |
[11] |
H. Kostadinov and N. Manev,
Integer codes correcting asymmetric errors in nand flash memories, Mathematics, 9 (2021), 1269.
doi: 10.3390/math9111269. |
[12] |
H. Kostadinov, H. Morita and N. Manev,
Derivation on bit error probability of coded QAM using integer codes, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E87-A (2004), 3397-3403.
|
[13] |
H. Kostadinov, H. Morita and N. Manev,
On ($\pm$1) error correctable integer codes, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E93-A (2010), 2758-2761.
|
[14] |
V. I. Levenshteĭn and A. J. H. Vinck,
Perfect (d, k) codes capable of correcting single peak-shifts, IEEE Transactions on Information Theory, 39 (1993), 656-662.
doi: 10.1109/18.212300. |
[15] |
K. Mehlhorn and P. Sanders, Algorithms and Data Structures: The Basic Toolbox, Springer-Verlag, Berlin, 2008. |
[16] |
S. Park and B. Bose, Burst asymmetric/unidirectional error correcting/detecting codes, Digest of Papers. Fault-Tolerant Computing: 20th International Symposium, (1992), 273–280. |
[17] |
W. W. Peterson and E. J. Weldon. Jr., Error-Correcting Codes, Second edition, The M.I.T. Press, Cambridge, Mass.-London, 1972.
![]() ![]() |
[18] |
A. Radonjic,
Integer codes correcting single asymmetric errors, Annals of Telecommunications, 76 (2021), 109-113.
|
[19] |
A. Radonjic and V. Vujicic,
Integer codes correcting burst errors within a byte, IEEE Transactions on Computers, 62 (2013), 411-415.
doi: 10.1109/TC.2011.243. |
[20] |
A. Radonjic and V. Vujicic,
Integer codes correcting spotty byte asymmetric errors, IEEE Communications Letters, 20 (2016), 2338-2341.
|
[21] |
A. Radonjic and V. Vujicic,
Integer codes correcting single errors and burst asymmetric errors within a byte, Inform. Process. Lett., 121 (2017), 45-50.
doi: 10.1016/j.ipl.2017.01.010. |
[22] |
A. Radonjic and V. Vujicic,
Integer codes correcting burst and random asymmetric errors within a byte, Journal of the Franklin Institute, 355 (2018), 981-996.
doi: 10.1016/j.jfranklin.2017.11.033. |
[23] |
A. Radonjic and V. Vujicic,
Integer codes correcting burst asymmetric errors within a byte and double asymmetric errors, Cryptography and Communications, 12 (2020), 221-230.
doi: 10.1007/s12095-019-00388-0. |
[24] |
R. R. Varshamov and G. M. Tenengolz,
One asymmetrical error-correcting codes, Avtomatika i Telemehanika, 26 (1965), 288-292.
|
[25] |
A. J. H. Vinck and H. Morita,
Codes over the ring of integer modulom, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 81A (1998), 2013-2018.
|
[26] |
A. D. Wyner,
Low-density-burst-correcting codes, IEEE Transactions on Information Theory, IT-9 (1963), 124.
|
show all references
References:
[1] |
I. F. Blake,
Codes over certain rings, Information and Control, 20 (1972), 396-404.
doi: 10.1016/S0019-9958(72)90223-9. |
[2] |
I. F. Blake,
Codes over integer residue rings, Information and Control, 29 (1975), 295-300.
doi: 10.1016/S0019-9958(75)80001-5. |
[3] |
B. Buccimazza, B. K. Dass and S. Jain,
High-density-burst error detection, Journal of Discrete Mathematical Sciences and Cryptography, 7 (2004), 5-21.
doi: 10.1080/09720529.2004.10697984. |
[4] |
D. Burton, Elementary Number Theory, 7$^{th}$ Edition, Mcgraw-Hill, 2011. |
[5] |
R. T. Chien and D. T. Tang,
On definitions of a burst, IBM Journal of Research and Development, 9 (1965), 292-293.
doi: 10.1147/rd.94.0292. |
[6] |
P. K. Das and N. K. Pokhrel, Asymmetric CT-burst correcting integer codes, 2021 5th International Conference on Information Systems and Computer Networks (ISCON), Mathura, India, (2021), 1–5. |
[7] |
B. K. Dass, F. Eugeni and S. Innamorati,
Low-Density burst error locating/correcting linear codes, Journal of Information and Optimization Sciences, 16 (1995), 533-548.
doi: 10.1080/02522667.1995.10699249. |
[8] |
B. K. Dass, G. Sobha and M. Zannetti,
High-density CT burst error-locating linear codes, Journal of Interdisciplinary Mathematics, 5 (2002), 243-249.
doi: 10.1080/09720502.2002.10700320. |
[9] |
P. Fire, A Class of Multiple-Error-Correcting Binary Codes for Non-Independent Errors, Sylvania Report RSL-E-2, Sylvania Reconnaissance Systems Laboratory, Mountain View, California, 1959. |
[10] |
T. Klove, Error Correcting Codes for the Asymmetric Channel, Technical Report $18-09-07-81$, Norway: Department of Informatics, University of Bergen, 1981. |
[11] |
H. Kostadinov and N. Manev,
Integer codes correcting asymmetric errors in nand flash memories, Mathematics, 9 (2021), 1269.
doi: 10.3390/math9111269. |
[12] |
H. Kostadinov, H. Morita and N. Manev,
Derivation on bit error probability of coded QAM using integer codes, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E87-A (2004), 3397-3403.
|
[13] |
H. Kostadinov, H. Morita and N. Manev,
On ($\pm$1) error correctable integer codes, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E93-A (2010), 2758-2761.
|
[14] |
V. I. Levenshteĭn and A. J. H. Vinck,
Perfect (d, k) codes capable of correcting single peak-shifts, IEEE Transactions on Information Theory, 39 (1993), 656-662.
doi: 10.1109/18.212300. |
[15] |
K. Mehlhorn and P. Sanders, Algorithms and Data Structures: The Basic Toolbox, Springer-Verlag, Berlin, 2008. |
[16] |
S. Park and B. Bose, Burst asymmetric/unidirectional error correcting/detecting codes, Digest of Papers. Fault-Tolerant Computing: 20th International Symposium, (1992), 273–280. |
[17] |
W. W. Peterson and E. J. Weldon. Jr., Error-Correcting Codes, Second edition, The M.I.T. Press, Cambridge, Mass.-London, 1972.
![]() ![]() |
[18] |
A. Radonjic,
Integer codes correcting single asymmetric errors, Annals of Telecommunications, 76 (2021), 109-113.
|
[19] |
A. Radonjic and V. Vujicic,
Integer codes correcting burst errors within a byte, IEEE Transactions on Computers, 62 (2013), 411-415.
doi: 10.1109/TC.2011.243. |
[20] |
A. Radonjic and V. Vujicic,
Integer codes correcting spotty byte asymmetric errors, IEEE Communications Letters, 20 (2016), 2338-2341.
|
[21] |
A. Radonjic and V. Vujicic,
Integer codes correcting single errors and burst asymmetric errors within a byte, Inform. Process. Lett., 121 (2017), 45-50.
doi: 10.1016/j.ipl.2017.01.010. |
[22] |
A. Radonjic and V. Vujicic,
Integer codes correcting burst and random asymmetric errors within a byte, Journal of the Franklin Institute, 355 (2018), 981-996.
doi: 10.1016/j.jfranklin.2017.11.033. |
[23] |
A. Radonjic and V. Vujicic,
Integer codes correcting burst asymmetric errors within a byte and double asymmetric errors, Cryptography and Communications, 12 (2020), 221-230.
doi: 10.1007/s12095-019-00388-0. |
[24] |
R. R. Varshamov and G. M. Tenengolz,
One asymmetrical error-correcting codes, Avtomatika i Telemehanika, 26 (1965), 288-292.
|
[25] |
A. J. H. Vinck and H. Morita,
Codes over the ring of integer modulom, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 81A (1998), 2013-2018.
|
[26] |
A. D. Wyner,
Low-density-burst-correcting codes, IEEE Transactions on Information Theory, IT-9 (1963), 124.
|





Sl.No. | Syndrome ($S_1$) | Error Loc.($i$) | Error($e$) | Sl.No. | Syndrome($S_1$) | Error Loc.($i$) | Error($e$) | |
1 | 1 | 2 | 1 | 49 | 107 | 1 | 74 | |
2 | 2 | 2 | 2 | 50 | 115 | 1 | 70 | |
3 | 3 | 2 | 3 | 51 | 118 | 1 | 196 | |
4 | 4 | 2 | 4 | 52 | 119 | 1 | 68 | |
5 | 5 | 2 | 5 | 53 | 123 | 1 | 66 | |
6 | 6 | 2 | 6 | 54 | 132 | 2 | 132 | |
7 | 7 | 2 | 7 | 55 | 140 | 2 | 140 | |
8 | 9 | 2 | 9 | 56 | 148 | 2 | 148 | |
9 | 10 | 2 | 10 | 57 | 151 | 1 | 52 | |
10 | 11 | 2 | 11 | 58 | 155 | 1 | 50 | |
11 | 12 | 2 | 12 | 59 | 157 | 1 | 49 | |
12 | 13 | 2 | 13 | 60 | 164 | 2 | 164 | |
13 | 14 | 2 | 14 | 61 | 167 | 1 | 44 | |
14 | 17 | 2 | 17 | 62 | 171 | 1 | 42 | |
15 | 18 | 2 | 18 | 63 | 173 | 1 | 41 | |
16 | 19 | 2 | 19 | 64 | 179 | 1 | 38 | |
17 | 20 | 2 | 20 | 65 | 181 | 1 | 37 | |
18 | 21 | 2 | 21 | 66 | 182 | 1 | 164 | |
19 | 22 | 2 | 22 | 67 | 183 | 1 | 36 | |
20 | 25 | 2 | 25 | 68 | 185 | 1 | 35 | |
21 | 26 | 2 | 26 | 69 | 187 | 1 | 34 | |
22 | 28 | 2 | 28 | 70 | 189 | 1 | 33 | |
23 | 33 | 2 | 33 | 71 | 196 | 2 | 196 | |
24 | 34 | 2 | 34 | 72 | 199 | 1 | 28 | |
25 | 35 | 2 | 35 | 73 | 203 | 1 | 26 | |
26 | 36 | 2 | 36 | 74 | 205 | 1 | 25 | |
27 | 37 | 2 | 37 | 75 | 211 | 1 | 22 | |
28 | 38 | 2 | 38 | 76 | 213 | 1 | 21 | |
29 | 41 | 2 | 41 | 77 | 214 | 1 | 148 | |
30 | 42 | 2 | 42 | 78 | 215 | 1 | 20 | |
31 | 44 | 2 | 44 | 79 | 217 | 1 | 19 | |
32 | 49 | 2 | 49 | 80 | 219 | 1 | 18 | |
33 | 50 | 2 | 50 | 81 | 221 | 1 | 17 | |
34 | 52 | 2 | 52 | 82 | 227 | 1 | 14 | |
35 | 55 | 1 | 100 | 83 | 229 | 1 | 13 | |
36 | 59 | 1 | 98 | 84 | 230 | 1 | 140 | |
37 | 66 | 2 | 66 | 85 | 231 | 1 | 12 | |
38 | 68 | 2 | 68 | 86 | 233 | 1 | 11 | |
39 | 70 | 2 | 70 | 87 | 235 | 1 | 10 | |
40 | 74 | 2 | 74 | 88 | 237 | 1 | 9 | |
41 | 76 | 2 | 76 | 89 | 241 | 1 | 7 | |
42 | 82 | 2 | 82 | 90 | 243 | 1 | 6 | |
43 | 84 | 2 | 84 | 91 | 245 | 1 | 5 | |
44 | 87 | 1 | 84 | 92 | 246 | 1 | 132 | |
45 | 91 | 1 | 82 | 93 | 247 | 1 | 4 | |
46 | 98 | 2 | 98 | 94 | 249 | 1 | 3 | |
47 | 100 | 2 | 100 | 95 | 251 | 1 | 2 | |
48 | 103 | 1 | 76 | 96 | 253 | 1 | 1 |
Sl.No. | Syndrome ($S_1$) | Error Loc.($i$) | Error($e$) | Sl.No. | Syndrome($S_1$) | Error Loc.($i$) | Error($e$) | |
1 | 1 | 2 | 1 | 49 | 107 | 1 | 74 | |
2 | 2 | 2 | 2 | 50 | 115 | 1 | 70 | |
3 | 3 | 2 | 3 | 51 | 118 | 1 | 196 | |
4 | 4 | 2 | 4 | 52 | 119 | 1 | 68 | |
5 | 5 | 2 | 5 | 53 | 123 | 1 | 66 | |
6 | 6 | 2 | 6 | 54 | 132 | 2 | 132 | |
7 | 7 | 2 | 7 | 55 | 140 | 2 | 140 | |
8 | 9 | 2 | 9 | 56 | 148 | 2 | 148 | |
9 | 10 | 2 | 10 | 57 | 151 | 1 | 52 | |
10 | 11 | 2 | 11 | 58 | 155 | 1 | 50 | |
11 | 12 | 2 | 12 | 59 | 157 | 1 | 49 | |
12 | 13 | 2 | 13 | 60 | 164 | 2 | 164 | |
13 | 14 | 2 | 14 | 61 | 167 | 1 | 44 | |
14 | 17 | 2 | 17 | 62 | 171 | 1 | 42 | |
15 | 18 | 2 | 18 | 63 | 173 | 1 | 41 | |
16 | 19 | 2 | 19 | 64 | 179 | 1 | 38 | |
17 | 20 | 2 | 20 | 65 | 181 | 1 | 37 | |
18 | 21 | 2 | 21 | 66 | 182 | 1 | 164 | |
19 | 22 | 2 | 22 | 67 | 183 | 1 | 36 | |
20 | 25 | 2 | 25 | 68 | 185 | 1 | 35 | |
21 | 26 | 2 | 26 | 69 | 187 | 1 | 34 | |
22 | 28 | 2 | 28 | 70 | 189 | 1 | 33 | |
23 | 33 | 2 | 33 | 71 | 196 | 2 | 196 | |
24 | 34 | 2 | 34 | 72 | 199 | 1 | 28 | |
25 | 35 | 2 | 35 | 73 | 203 | 1 | 26 | |
26 | 36 | 2 | 36 | 74 | 205 | 1 | 25 | |
27 | 37 | 2 | 37 | 75 | 211 | 1 | 22 | |
28 | 38 | 2 | 38 | 76 | 213 | 1 | 21 | |
29 | 41 | 2 | 41 | 77 | 214 | 1 | 148 | |
30 | 42 | 2 | 42 | 78 | 215 | 1 | 20 | |
31 | 44 | 2 | 44 | 79 | 217 | 1 | 19 | |
32 | 49 | 2 | 49 | 80 | 219 | 1 | 18 | |
33 | 50 | 2 | 50 | 81 | 221 | 1 | 17 | |
34 | 52 | 2 | 52 | 82 | 227 | 1 | 14 | |
35 | 55 | 1 | 100 | 83 | 229 | 1 | 13 | |
36 | 59 | 1 | 98 | 84 | 230 | 1 | 140 | |
37 | 66 | 2 | 66 | 85 | 231 | 1 | 12 | |
38 | 68 | 2 | 68 | 86 | 233 | 1 | 11 | |
39 | 70 | 2 | 70 | 87 | 235 | 1 | 10 | |
40 | 74 | 2 | 74 | 88 | 237 | 1 | 9 | |
41 | 76 | 2 | 76 | 89 | 241 | 1 | 7 | |
42 | 82 | 2 | 82 | 90 | 243 | 1 | 6 | |
43 | 84 | 2 | 84 | 91 | 245 | 1 | 5 | |
44 | 87 | 1 | 84 | 92 | 246 | 1 | 132 | |
45 | 91 | 1 | 82 | 93 | 247 | 1 | 4 | |
46 | 98 | 2 | 98 | 94 | 249 | 1 | 3 | |
47 | 100 | 2 | 100 | 95 | 251 | 1 | 2 | |
48 | 103 | 1 | 76 | 96 | 253 | 1 | 1 |
Sl.No. | Syndrome($S_2$) | Error Loc.($i$) | Error($e$) | Sl.No. | Syndrome($S_2$) | Error Loc.($i$) | Error($e$) | |
1 | 3 | 2 | 3 | 36 | 76 | 1 | 14 | |
2 | 5 | 2 | 5 | 37 | 77 | 1 | 88 | |
3 | 6 | 2 | 6 | 38 | 80 | 2 | 80 | |
4 | 7 | 2 | 7 | 39 | 83 | 1 | 22 | |
5 | 9 | 2 | 9 | 40 | 88 | 2 | 88 | |
6 | 10 | 2 | 10 | 41 | 90 | 1 | 30 | |
7 | 11 | 2 | 11 | 42 | 91 | 1 | 104 | |
8 | 12 | 2 | 12 | 43 | 98 | 1 | 112 | |
9 | 13 | 2 | 13 | 44 | 100 | 1 | 5 | |
10 | 14 | 2 | 14 | 45 | 104 | 2 | 104 | |
11 | 15 | 2 | 15 | 46 | 105 | 1 | 120 | |
12 | 18 | 2 | 18 | 47 | 107 | 1 | 13 | |
13 | 20 | 2 | 20 | 48 | 112 | 2 | 112 | |
14 | 21 | 1 | 24 | 49 | 120 | 2 | 120 | |
15 | 22 | 2 | 22 | 50 | 126 | 1 | 144 | |
16 | 24 | 2 | 24 | 51 | 138 | 1 | 12 | |
17 | 26 | 2 | 26 | 52 | 144 | 2 | 144 | |
18 | 28 | 2 | 28 | 53 | 145 | 1 | 20 | |
19 | 30 | 2 | 30 | 54 | 152 | 1 | 28 | |
20 | 35 | 1 | 40 | 55 | 154 | 1 | 176 | |
21 | 36 | 2 | 36 | 56 | 159 | 1 | 36 | |
22 | 38 | 1 | 7 | 57 | 162 | 1 | 3 | |
23 | 40 | 2 | 40 | 58 | 166 | 1 | 44 | |
24 | 42 | 1 | 48 | 59 | 169 | 1 | 11 | |
25 | 44 | 2 | 44 | 60 | 173 | 1 | 52 | |
26 | 45 | 1 | 15 | 61 | 176 | 2 | 176 | |
27 | 48 | 2 | 48 | 62 | 180 | 1 | 60 | |
28 | 49 | 1 | 56 | 63 | 182 | 1 | 208 | |
29 | 52 | 2 | 52 | 64 | 200 | 1 | 10 | |
30 | 56 | 2 | 56 | 65 | 207 | 1 | 18 | |
31 | 60 | 2 | 60 | 66 | 208 | 2 | 208 | |
32 | 63 | 1 | 72 | 67 | 210 | 1 | 240 | |
33 | 69 | 1 | 6 | 68 | 214 | 1 | 26 | |
34 | 70 | 1 | 80 | 69 | 231 | 1 | 9 | |
35 | 72 | 2 | 72 | 70 | 240 | 2 | 240 |
Sl.No. | Syndrome($S_2$) | Error Loc.($i$) | Error($e$) | Sl.No. | Syndrome($S_2$) | Error Loc.($i$) | Error($e$) | |
1 | 3 | 2 | 3 | 36 | 76 | 1 | 14 | |
2 | 5 | 2 | 5 | 37 | 77 | 1 | 88 | |
3 | 6 | 2 | 6 | 38 | 80 | 2 | 80 | |
4 | 7 | 2 | 7 | 39 | 83 | 1 | 22 | |
5 | 9 | 2 | 9 | 40 | 88 | 2 | 88 | |
6 | 10 | 2 | 10 | 41 | 90 | 1 | 30 | |
7 | 11 | 2 | 11 | 42 | 91 | 1 | 104 | |
8 | 12 | 2 | 12 | 43 | 98 | 1 | 112 | |
9 | 13 | 2 | 13 | 44 | 100 | 1 | 5 | |
10 | 14 | 2 | 14 | 45 | 104 | 2 | 104 | |
11 | 15 | 2 | 15 | 46 | 105 | 1 | 120 | |
12 | 18 | 2 | 18 | 47 | 107 | 1 | 13 | |
13 | 20 | 2 | 20 | 48 | 112 | 2 | 112 | |
14 | 21 | 1 | 24 | 49 | 120 | 2 | 120 | |
15 | 22 | 2 | 22 | 50 | 126 | 1 | 144 | |
16 | 24 | 2 | 24 | 51 | 138 | 1 | 12 | |
17 | 26 | 2 | 26 | 52 | 144 | 2 | 144 | |
18 | 28 | 2 | 28 | 53 | 145 | 1 | 20 | |
19 | 30 | 2 | 30 | 54 | 152 | 1 | 28 | |
20 | 35 | 1 | 40 | 55 | 154 | 1 | 176 | |
21 | 36 | 2 | 36 | 56 | 159 | 1 | 36 | |
22 | 38 | 1 | 7 | 57 | 162 | 1 | 3 | |
23 | 40 | 2 | 40 | 58 | 166 | 1 | 44 | |
24 | 42 | 1 | 48 | 59 | 169 | 1 | 11 | |
25 | 44 | 2 | 44 | 60 | 173 | 1 | 52 | |
26 | 45 | 1 | 15 | 61 | 176 | 2 | 176 | |
27 | 48 | 2 | 48 | 62 | 180 | 1 | 60 | |
28 | 49 | 1 | 56 | 63 | 182 | 1 | 208 | |
29 | 52 | 2 | 52 | 64 | 200 | 1 | 10 | |
30 | 56 | 2 | 56 | 65 | 207 | 1 | 18 | |
31 | 60 | 2 | 60 | 66 | 208 | 2 | 208 | |
32 | 63 | 1 | 72 | 67 | 210 | 1 | 240 | |
33 | 69 | 1 | 6 | 68 | 214 | 1 | 26 | |
34 | 70 | 1 | 80 | 69 | 231 | 1 | 9 | |
35 | 72 | 2 | 72 | 70 | 240 | 2 | 240 |
$b$ | ${l}$ | $\lfloor \frac{{l}}{2} \rfloor$ | Coefficients |
7 | 5 | 2 | 2, 33, 47,100 |
8 | 4 | 2 | 2 |
8 | 6 | 3 | 2 |
10 | 4 | 2 | 2, 7, 13, 15, 23, 37, 41, 47, 49, 83 |
10 | 6 | 3 | 2,135 |
10 | 7 | 3 | 2 |
16 | 4 | 2 | 2, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 81, 83, 89, 91, 97,101,105,107,109 |
16 | 5 | 2 | 2, 7, 11, 13, 15, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 67, 71, 73, 77, 79, 81, 83, 89, 97,101,105,107,109,121,125,127 |
16 | 6 | 3 | 2, 15, 23, 29, 31, 43, 47, 53, 59, 67, 71, 73, 77, 79, 83, 89, 97,101,107,117,131,137,139,149,157,163,167,181,199,227,233,251 |
16 | 8 | 4 | 2, 31, 61,207,776, 7769 |
16 | 9 | 4 | 2, 31,413, 1536, 16904 |
32 | 6 | 3 | 2, 15, 23, 29, 31, 43, 47, 53, 59, 61, 67, 71, 73, 77, 79, 81, 83, 89, 97,101,103,107,109,113,127,131,137,139,149,151,157,163 |
32 | 7 | 3 | 2, 15, 29, 31, 43, 47, 53, 59, 61, 71, 77, 79, 83, 89,101,103,107,109,113,117,127,131,137,139,149,151,157,163,167,173,179,181 |
32 | 8 | 4 | 2, 31, 61, 63, 79, 95,103,107,121,127,151,157,167,173,179,181,191,199,211,221,223,227,229,233,239,241,251,257,263,269,271,277 |
$b$ | ${l}$ | $\lfloor \frac{{l}}{2} \rfloor$ | Coefficients |
7 | 5 | 2 | 2, 33, 47,100 |
8 | 4 | 2 | 2 |
8 | 6 | 3 | 2 |
10 | 4 | 2 | 2, 7, 13, 15, 23, 37, 41, 47, 49, 83 |
10 | 6 | 3 | 2,135 |
10 | 7 | 3 | 2 |
16 | 4 | 2 | 2, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 81, 83, 89, 91, 97,101,105,107,109 |
16 | 5 | 2 | 2, 7, 11, 13, 15, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 67, 71, 73, 77, 79, 81, 83, 89, 97,101,105,107,109,121,125,127 |
16 | 6 | 3 | 2, 15, 23, 29, 31, 43, 47, 53, 59, 67, 71, 73, 77, 79, 83, 89, 97,101,107,117,131,137,139,149,157,163,167,181,199,227,233,251 |
16 | 8 | 4 | 2, 31, 61,207,776, 7769 |
16 | 9 | 4 | 2, 31,413, 1536, 16904 |
32 | 6 | 3 | 2, 15, 23, 29, 31, 43, 47, 53, 59, 61, 67, 71, 73, 77, 79, 81, 83, 89, 97,101,103,107,109,113,127,131,137,139,149,151,157,163 |
32 | 7 | 3 | 2, 15, 29, 31, 43, 47, 53, 59, 61, 71, 77, 79, 83, 89,101,103,107,109,113,117,127,131,137,139,149,151,157,163,167,173,179,181 |
32 | 8 | 4 | 2, 31, 61, 63, 79, 95,103,107,121,127,151,157,167,173,179,181,191,199,211,221,223,227,229,233,239,241,251,257,263,269,271,277 |
$b$ | ${l}$ | $\lceil \frac{{l}}{2} \rceil$ | Coefficients |
8 | 3 | 2 | 2, 3, 29, 37 |
8 | 4 | 2 | 31 |
8 | 5 | 3 | 239 |
10 | 4 | 2 | 2, 13, 41 |
10 | 6 | 3 | 991 |
10 | 5 | 3 | 7 |
16 | 5 | 3 | 2, 5, 11, 17, 35, 37, 39, 43, 47, 53, 59, 61, 67, 71, 73, 77, 79, 83, 97,101,107,113,119,127,131,137,149,151,157,163,169,173 |
16 | 6 | 3 | 2, 11, 67, 71, 73, 79, 95,103,129,137,179,193,217,267,293,311,327,373,389,393,449,461,517,725,761, 1001, 2501, 2527, 2999, 3481, 3643, 4517 |
16 | 7 | 4 | 2, 9, 43,131,139,163,183,197,199,209,251,491, 2477, 4727 |
16 | 8 | 4 | 7, 61, 22447 |
16 | 9 | 5 | 2389, 21769, 65279 |
32 | 6 | 3 | 2, 11, 17, 65, 67, 69, 71, 73, 79, 83, 89, 97,101,103,107,109,113,121,127,131,133,137,139,149,151,157,163,167,173,179,181,187 |
32 | 8 | 4 | 2, 19, 87, 97,131,137,161,193,257,263,265,269,271,277,281,283,289,293,307,311,313,317,331,337,341,347,349,353,359,361,367,373 |
32 | 9 | 5 | 2, 17, 47, 77,129,131,139,193,197,257,263,265,269,277,281,289,293,321,337,353,389,401,449,521,523,529,531,533,541,547,551,557 |
$b$ | ${l}$ | $\lceil \frac{{l}}{2} \rceil$ | Coefficients |
8 | 3 | 2 | 2, 3, 29, 37 |
8 | 4 | 2 | 31 |
8 | 5 | 3 | 239 |
10 | 4 | 2 | 2, 13, 41 |
10 | 6 | 3 | 991 |
10 | 5 | 3 | 7 |
16 | 5 | 3 | 2, 5, 11, 17, 35, 37, 39, 43, 47, 53, 59, 61, 67, 71, 73, 77, 79, 83, 97,101,107,113,119,127,131,137,149,151,157,163,169,173 |
16 | 6 | 3 | 2, 11, 67, 71, 73, 79, 95,103,129,137,179,193,217,267,293,311,327,373,389,393,449,461,517,725,761, 1001, 2501, 2527, 2999, 3481, 3643, 4517 |
16 | 7 | 4 | 2, 9, 43,131,139,163,183,197,199,209,251,491, 2477, 4727 |
16 | 8 | 4 | 7, 61, 22447 |
16 | 9 | 5 | 2389, 21769, 65279 |
32 | 6 | 3 | 2, 11, 17, 65, 67, 69, 71, 73, 79, 83, 89, 97,101,103,107,109,113,121,127,131,133,137,139,149,151,157,163,167,173,179,181,187 |
32 | 8 | 4 | 2, 19, 87, 97,131,137,161,193,257,263,265,269,271,277,281,283,289,293,307,311,313,317,331,337,341,347,349,353,359,361,367,373 |
32 | 9 | 5 | 2, 17, 47, 77,129,131,139,193,197,257,263,265,269,277,281,289,293,321,337,353,389,401,449,521,523,529,531,533,541,547,551,557 |
Codes | $b$ | ${l}$ | $ \lfloor \frac{{l}}{2} \rfloor$ | $LUT_1$ size | $LUT_2$ size | No of table look ups |
(144,128) | 16 | 4 | 2 | 4$\times$ 16B | 2.11 KB | 1 $\leq \eta_{TL} \leq$ 10 |
(528,512) | 16 | 5 | 2 | 4$\times$ 64B | 9.41 KB | 1 $\leq \eta_{TL} \leq$ 12 |
(512,480) | 32 | 6 | 3 | 4$\times$ 60B | 58.75 KB | 1 $\leq \eta_{TL} \leq$ 14 |
(1056, 1024) | 32 | 8 | 4 | 4$\times$ 128B | 0.46 MB | 1 $\leq \eta_{TL} \leq$ 17 |
Codes | $b$ | ${l}$ | $ \lfloor \frac{{l}}{2} \rfloor$ | $LUT_1$ size | $LUT_2$ size | No of table look ups |
(144,128) | 16 | 4 | 2 | 4$\times$ 16B | 2.11 KB | 1 $\leq \eta_{TL} \leq$ 10 |
(528,512) | 16 | 5 | 2 | 4$\times$ 64B | 9.41 KB | 1 $\leq \eta_{TL} \leq$ 12 |
(512,480) | 32 | 6 | 3 | 4$\times$ 60B | 58.75 KB | 1 $\leq \eta_{TL} \leq$ 14 |
(1056, 1024) | 32 | 8 | 4 | 4$\times$ 128B | 0.46 MB | 1 $\leq \eta_{TL} \leq$ 17 |
Codes | $b$ | ${l}$ | $\lceil \frac{{l}}{2}\rceil $ | $LUT_1$ size | $LUT_2$ size | No of table look ups |
$(240,224)$ | $16$ | $7$ | $4$ | $4 \times 28$ B | $28.35$ KB | $1 \leq \eta_{TL} \leq 14$ |
$(512,496)$ | $16$ | $6$ | $3$ | $4 \times 62$ B | $42.33$ KB | $1 \leq \eta_{TL} \leq 15$ |
$(544,512)$ | $32$ | $6$ | $3$ | $4 \times 64$ B | $0.1$ MB | $1 \leq \eta_{TL} \leq 15$ |
$(1056, 1024)$ | $32$ | $8$ | $4$ | $4 \times 128$ B | $0.71$ MB | $1 \leq \eta_{TL} \leq 18$ |
Codes | $b$ | ${l}$ | $\lceil \frac{{l}}{2}\rceil $ | $LUT_1$ size | $LUT_2$ size | No of table look ups |
$(240,224)$ | $16$ | $7$ | $4$ | $4 \times 28$ B | $28.35$ KB | $1 \leq \eta_{TL} \leq 14$ |
$(512,496)$ | $16$ | $6$ | $3$ | $4 \times 62$ B | $42.33$ KB | $1 \leq \eta_{TL} \leq 15$ |
$(544,512)$ | $32$ | $6$ | $3$ | $4 \times 64$ B | $0.1$ MB | $1 \leq \eta_{TL} \leq 15$ |
$(1056, 1024)$ | $32$ | $8$ | $4$ | $4 \times 128$ B | $0.71$ MB | $1 \leq \eta_{TL} \leq 18$ |
Codes | Error pattern | $b$ | ${l}$ | $LUT_2$ size | $\#$ table look ups |
$LACTB_{(\textit{d/l, }b)}C$ | Proposed low-density | 32 | 8 | 0.46 MB | 1 $\leq \eta_{TL} \leq $ 17 |
$HACTB_{(\textit{h/l}, b)}C$ | Proposed high-density | 32 | 8 | 0.71 MB | 1 $\leq \eta_{TL} \leq $ 18 |
$(CT_{\textit{l}}B)_b$ from [6] | Asymmetric CT-bursts | 32 | 8 | 0.96 MB | 1 $\leq \eta_{TL} \leq $ 18 |
From [19] | Symmetric bursts | 32 | 8 | 3.84 MB | 1 $\leq \eta_{TL} \leq $ 20 |
From [22] | Bursts and random asymmetric | 32 | 8 | 2.32 MB | 1 $\leq \eta_{TL} \leq $ 20 |
From [23] | Asymmetric bursts and double random asymmetric | 32 | 8 | 8.91 MB | 1 $\leq \eta_{TL} \leq $ 21 |
Codes | Error pattern | $b$ | ${l}$ | $LUT_2$ size | $\#$ table look ups |
$LACTB_{(\textit{d/l, }b)}C$ | Proposed low-density | 32 | 8 | 0.46 MB | 1 $\leq \eta_{TL} \leq $ 17 |
$HACTB_{(\textit{h/l}, b)}C$ | Proposed high-density | 32 | 8 | 0.71 MB | 1 $\leq \eta_{TL} \leq $ 18 |
$(CT_{\textit{l}}B)_b$ from [6] | Asymmetric CT-bursts | 32 | 8 | 0.96 MB | 1 $\leq \eta_{TL} \leq $ 18 |
From [19] | Symmetric bursts | 32 | 8 | 3.84 MB | 1 $\leq \eta_{TL} \leq $ 20 |
From [22] | Bursts and random asymmetric | 32 | 8 | 2.32 MB | 1 $\leq \eta_{TL} \leq $ 20 |
From [23] | Asymmetric bursts and double random asymmetric | 32 | 8 | 8.91 MB | 1 $\leq \eta_{TL} \leq $ 21 |
[1] |
Subhabrata Samajder, Palash Sarkar. Another look at success probability of linear cryptanalysis. Advances in Mathematics of Communications, 2019, 13 (4) : 645-688. doi: 10.3934/amc.2019040 |
[2] |
Louis Caccetta, Syarifah Z. Nordin. Mixed integer programming model for scheduling in unrelated parallel processor system with priority consideration. Numerical Algebra, Control and Optimization, 2014, 4 (2) : 115-132. doi: 10.3934/naco.2014.4.115 |
[3] |
Martianus Frederic Ezerman, San Ling, Patrick Solé, Olfa Yemen. From skew-cyclic codes to asymmetric quantum codes. Advances in Mathematics of Communications, 2011, 5 (1) : 41-57. doi: 10.3934/amc.2011.5.41 |
[4] |
Neal Koblitz, Alfred Menezes. Another look at security definitions. Advances in Mathematics of Communications, 2013, 7 (1) : 1-38. doi: 10.3934/amc.2013.7.1 |
[5] |
Neal Koblitz, Alfred Menezes. Another look at generic groups. Advances in Mathematics of Communications, 2007, 1 (1) : 13-28. doi: 10.3934/amc.2007.1.13 |
[6] |
Johan Rosenkilde. Power decoding Reed-Solomon codes up to the Johnson radius. Advances in Mathematics of Communications, 2018, 12 (1) : 81-106. doi: 10.3934/amc.2018005 |
[7] |
Tsonka Baicheva. All binary linear codes of lengths up to 18 or redundancy up to 10 are normal. Advances in Mathematics of Communications, 2011, 5 (4) : 681-686. doi: 10.3934/amc.2011.5.681 |
[8] |
Vladimir Dragović, Katarina Kukić. Discriminantly separable polynomials and quad-equations. Journal of Geometric Mechanics, 2014, 6 (3) : 319-333. doi: 10.3934/jgm.2014.6.319 |
[9] |
Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Dead cores and bursts for p-Laplacian elliptic equations with weights. Conference Publications, 2007, 2007 (Special) : 191-200. doi: 10.3934/proc.2007.2007.191 |
[10] |
Zhiguo Feng, Ka-Fai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial and Management Optimization, 2014, 10 (2) : 557-566. doi: 10.3934/jimo.2014.10.557 |
[11] |
Jinlong Guo, Bin Li, Yuandong Ji. A control parametrization based path planning method for the quad-rotor uavs. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1079-1100. doi: 10.3934/jimo.2021009 |
[12] |
Dean Crnković, Marija Maksimović, Bernardo Gabriel Rodrigues, Sanja Rukavina. Self-orthogonal codes from the strongly regular graphs on up to 40 vertices. Advances in Mathematics of Communications, 2016, 10 (3) : 555-582. doi: 10.3934/amc.2016026 |
[13] |
Ken Saito. Self-dual additive $ \mathbb{F}_4 $-codes of lengths up to 40 represented by circulant graphs. Advances in Mathematics of Communications, 2019, 13 (2) : 213-220. doi: 10.3934/amc.2019014 |
[14] |
Markus Kunze. A second look at the Kurth solution in galactic dynamics. Kinetic and Related Models, 2022, 15 (4) : 651-662. doi: 10.3934/krm.2021028 |
[15] |
Marek Bodnar, Urszula Foryś. Time Delay In Necrotic Core Formation. Mathematical Biosciences & Engineering, 2005, 2 (3) : 461-472. doi: 10.3934/mbe.2005.2.461 |
[16] |
Apostolis Pavlou. Asymmetric information in a bilateral monopoly. Journal of Dynamics and Games, 2016, 3 (2) : 169-189. doi: 10.3934/jdg.2016009 |
[17] |
Armands Gritsans, Felix Sadyrbaev. The Nehari solutions and asymmetric minimizers. Conference Publications, 2015, 2015 (special) : 562-568. doi: 10.3934/proc.2015.0562 |
[18] |
Jayadev S. Athreya, Gregory A. Margulis. Values of random polynomials at integer points. Journal of Modern Dynamics, 2018, 12: 9-16. doi: 10.3934/jmd.2018002 |
[19] |
Emile Franc Doungmo Goufo, Melusi Khumalo, Patrick M. Tchepmo Djomegni. Perturbations of Hindmarsh-Rose neuron dynamics by fractional operators: Bifurcation, firing and chaotic bursts. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 663-682. doi: 10.3934/dcdss.2020036 |
[20] |
Sherif I. Ammar, Alexander Zeifman, Yacov Satin, Ksenia Kiseleva, Victor Korolev. On limiting characteristics for a non-stationary two-processor heterogeneous system with catastrophes, server failures and repairs. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1057-1068. doi: 10.3934/jimo.2020011 |
2021 Impact Factor: 1.015
Tools
Article outline
Figures and Tables
[Back to Top]