\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents
Early Access

Early Access articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Early Access publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Early Access articles via the “Early Access” tab for the selected journal.

New type I binary $[72, 36, 12]$ self-dual codes from $M_6(\mathbb{F}_2)G$ - Group matrix rings by a hybrid search technique based on a neighbourhood-virus optimisation algorithm

  • * Corresponding author

    * Corresponding author 
Abstract Full Text(HTML) Figure(1) / Table(1) Related Papers Cited by
  • In this paper, a new search technique based on a virus optimisation algorithm is proposed for calculating the neighbours of binary self-dual codes. The aim of this new technique is to calculate neighbours of self-dual codes without reducing the search field in the search process (this technique is known in the literature due to the computational time constraint) but still obtaining results in a reasonable time (significantly faster when compared to the standard linear computational search). We employ this new search algorithm to the well-known neighbour method and its extension, the $ k^{th} $-range neighbours, and search for binary $ [72, 36, 12] $ self-dual codes. In particular, we present six generator matrices of the form $ [I_{36} \ | \ \tau_6(v)], $ where $ I_{36} $ is the $ 36 \times 36 $ identity matrix, $ v $ is an element in the group matrix ring $ M_6(\mathbb{F}_2)G $ and $ G $ is a finite group of order 6, to which we employ the proposed algorithm and search for binary $ [72, 36, 12] $ self-dual codes directly over the finite field $ \mathbb{F}_2 $. We construct 1471 new Type I binary $ [72, 36, 12] $ self-dual codes with the rare parameters $ \gamma = 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 32 $ in their weight enumerators.

    Mathematics Subject Classification: Primary: 94B05, 16S34, 68W50.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Flowchart of the Neighbourhood-Virus Optimisation Algorithm

    Table 1.  New Type I $ [72, 36, 12] $ Codes from $ \mathcal{G}_i $

    Generator Matrix $ r_{A_1} $ $ r_{A_2} $ $ r_{A_3} $ $ r_{A_4} $ $ r_{A_5} $ $ r_{A_6} $ $ \gamma $ $ \beta $ $ |Aut(C_i)| $
    $ \mathcal{G}_1 $ $ (1, 1, 1, 1, 1, 1) $ $ (0, 1, 0, 0, 0, 0) $ $ (1, 1, 1, 0, 1, 0) $ $ (0, 0, 0, 1, 1, 0) $ $ (1, 0, 1, 0, 1, 1) $ $ (1, 1, 1, 0, 0, 1) $ $ 0 $ $ 165 $ $ 72 $
    $ \mathcal{G}_2 $ $ (1, 0, 0, 0, 1, 1) $ $ (0, 0, 0, 0, 0, 1) $ $ (0, 1, 0, 1, 0, 0) $ $ (0, 1, 0, 0, 1, 1) $ $ (1, 1, 1, 1, 1, 0) $ $ (1, 0, 0, 1, 0, 1) $ $ 0 $ $ 315 $ $ 72 $
    $ \mathcal{G}_3 $ $ (1, 1, 0, 1, 0, 0) $ $ (1, 0, 1, 1, 1, 1 ) $ $ (1, 0, 0, 1, 1, 0) $ $ (1, 0, 0, 1, 1, 1) $ $ (0, 0, 1, 1, 0, 1 ) $ $ (0, 0, 0, 1, 1, 1) $ $ 0 $ $ 255 $ $ 36 $
    $ \mathcal{G}_4 $ $ (0, 1, 0, 1, 1, 1 ) $ $ (1, 1, 0, 1, 1, 0) $ $ (1, 1, 1, 0, 1, 0 ) $ $ (1, 0, 0, 1, 1, 1) $ $ ( 0, 0, 1, 0, 1, 0) $ $ (1, 1, 0, 0, 1, 0) $ $ 0 $ $ 309 $ $ 72 $
    $ \mathcal{G}_5 $ $ (1, 1, 0, 1, 0, 0) $ $ (0, 0, 0, 1, 0, 1 ) $ $ (1, 1, 0, 1, 0, 0) $ $ (1, 0, 1, 0, 0, 1 ) $ $ (1, 1, 0, 0, 0, 1 ) $ $ (1, 1, 0, 0, 1, 0) $ $ 36 $ $ 537 $ $ 72 $
    $ \mathcal{G}_6 $ $ (1, 0, 0, 0, 0, 0 ) $ $ (0, 0, 1, 1, 0, 1) $ $ (1, 0, 0, 1, 1, 1) $ $ (1, 1, 0, 0, 0, 1 ) $ $ (0, 1, 1, 0, 0, 1 ) $ $ (1, 0, 0, 1, 1, 0 ) $ $ 0 $ $ 231 $ $ 36 $
     | Show Table
    DownLoad: CSV
  • [1] W. BosmaJ. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.
    [2] J. R. Cuevas, H. J. Wang, Y. C. Lai and Y. C. Liang, Virus optimization algorithm: A novel metaheuristic for solving continuous optimization problems, The 10th Asia Pacific Industrial Engineering Management System Conference, (2009), 2166–2174.
    [3] S. T. Dougherty, The neighbor graph of binary self-dual codes, Des. Codes and Cryptogr., 90 (2022), 409-425.  doi: 10.1007/s10623-021-00985-2.
    [4] S. T. Dougherty, J. Gildea and A. Kaya, Quadruple bordered constructions of self-dual codes from group rings over frobenius rings, Cryptogr. Commun., 12, (2020), 127–146. doi: 10.1007/s12095-019-00380-8.
    [5] S. T. DoughertyJ. GildeaA. Korban and A. Kaya, Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68, Adv. Math. Commun., 14 (2020), 677-702.  doi: 10.3934/amc.2020037.
    [6] S. T. DoughertyJ. GildeaA. Korban and A. Kaya, New extremal self-dual binary codes of length 68 via composite construction, $\mathbb{F}_2+u\mathbb{F}_2$ lifts, extensions and neighbors, Int. J. Inf. Coding Theory, 5 (2018), 211-226. 
    [7] S. T. DoughertyJ. GildeaA. Korban and A. Kaya, Composite matrices from group rings, composite $G$-codes and constructions of self-dual codes, Des. Codes Cryptogr., 89 (2021), 1615-1638.  doi: 10.1007/s10623-021-00882-8.
    [8] S. T. DoughertyJ. GildeaA. KorbanA. KayaA. Tylyshchak and B. Yildiz, Bordered constructions of self- dual codes from group rings and new extremal binary self-dual codes, Finite Fields Appl., 57 (2019), 108-127.  doi: 10.1016/j.ffa.2019.02.004.
    [9] S. T. DoughertyJ. GildeaR. Taylor and A. Tylshchak, Group rings, $G$-codes and constructions of self-dual and formally self-dual codes, Des. Codes Cryptogr., 86 (2018), 2115-2138.  doi: 10.1007/s10623-017-0440-7.
    [10] S. T. DoughertyT. A. Gulliver and M. Harada, Extremal binary self dual codes, IEEE Trans. Inform. Theory, 43 (1997), 2036-2047.  doi: 10.1109/18.641574.
    [11] S. T. DoughertyJ.-L. Kim and P. Solé, Double circulant codes from two class association schemes, Adv. Math. Commun., 1 (2007), 45-64.  doi: 10.3934/amc.2007.1.45.
    [12] S. T. Dougherty, A. Korban, S. Sahinkaya and D. Ustun, Group matrix ring codes and constructions of self-dual codes, Applicable Algebra in Engineering, Communication and Computing, 2021. doi: 10.1007/s00200-021-00504-9.
    [13] J. Gildea, A. Kaya, A. Korban and B. Yildiz, New extremal binary self-dual codes of length 68 from generalized neighbours, Finite Fields Appl., 67 (2020), 101727, 12 pp. doi: 10.1016/j.ffa.2020.101727.
    [14] J. GildeaA. KayaR. Taylor and B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl., 51 (2018), 71-92.  doi: 10.1016/j.ffa.2018.01.002.
    [15] T. A. Gulliver and M. Harada, On double circulant doubly-even self-dual $[72, 36, 12]$ codes and their neighbors, Austalas. J. Comb., 40 (2008), 137-144. 
    [16] A. Korban, All known Type I and Type II $[72, 36, 12]$ binary self-dual codes, available online at https://sites.google.com/view/adriankorban/binary-self-dual-codes.
    [17] A. Korban, S. Sahinkaya and D. Ustun, A novel genetic search scheme based on nature - Inspired evolutionary algorithms for self-dual codes, arXiv: 2012.12248, in submission.
    [18] A. Korban, S. Sahinkaya and D. Ustun, New singly and doubly even binary $[72, 36, 12]$ self-dual codes from $M_2(R)G$- group matrix rings, Finite Fields Appl., 76 (2021), Paper No. 101924, 20 pp. doi: 10.1016/j.ffa.2021.101924.
    [19] A. Korban, S. Sahinkaya and D. Ustun, An application of the virus optimization algorithm to the problem of finding extremal binary self-dual codes, arXiv: 2103.07739, in submission.
    [20] A. Korban, S. Sahinkaya and D. Ustun, New extremal binary self-dual codes of length 72 from composite group matrix rings and the neighbour method integrated to the virus optimisation algorithm, in submission.
    [21] A. Korban, S. Sahinkaya and D. Ustun, New type i binary $[72, 36, 12]$ self-dual codes from composite matrices and $R_1$ lifts, Advances in Mathematics of Communications, 2021. doi: 10.3934/amc.2021034.
    [22] A. Korban, S. Sahinkaya and D. Ustun, Generator matrices for the manuscript "New type I binary $[72, 36, 12]$ self-dual codes from $M_6(\mathbb{F}_2)G$ - Group matrix rings by a hybrid search technique based on a neighbourhood-virus optimisation algorithm", available online at https://sites.google.com/view/serap-sahinkaya/generator-matrices.
    [23] E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inf. Theory, 44 (1998), 134-139.  doi: 10.1109/18.651000.
    [24] M. ShiD. HuangL. Sok and P. Solé, Double circulant self-dual and LCD codes over Galios rings, Adv. Math. Commun., 13 (2019), 171-183.  doi: 10.3934/amc.2019011.
    [25] M. ShiL. Qian and P. Solé, On self-dual negacirculant codes of index two and four, Des. Codes Cryptogr., 86 (2018), 2485-2494.  doi: 10.1007/s10623-017-0455-0.
    [26] M. ShiL. SokP. Solé and S. Çalkavur, Self-dual codes and orthogonal matrices over large finite fields, Finite Fields Appl., 54 (2018), 297-314.  doi: 10.1016/j.ffa.2018.08.011.
  • 加载中

Figures(1)

Tables(1)

SHARE

Article Metrics

HTML views(1881) PDF downloads(438) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return