[1]
|
W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125.
|
[2]
|
J. R. Cuevas, H. J. Wang, Y. C. Lai and Y. C. Liang, Virus optimization algorithm: A novel metaheuristic for solving continuous optimization problems, The 10th Asia Pacific Industrial Engineering Management System Conference, (2009), 2166–2174.
|
[3]
|
S. T. Dougherty, The neighbor graph of binary self-dual codes, Des. Codes and Cryptogr., 90 (2022), 409-425.
doi: 10.1007/s10623-021-00985-2.
|
[4]
|
S. T. Dougherty, J. Gildea and A. Kaya, Quadruple bordered constructions of self-dual codes from group rings over frobenius rings, Cryptogr. Commun., 12, (2020), 127–146.
doi: 10.1007/s12095-019-00380-8.
|
[5]
|
S. T. Dougherty, J. Gildea, A. Korban and A. Kaya, Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68, Adv. Math. Commun., 14 (2020), 677-702.
doi: 10.3934/amc.2020037.
|
[6]
|
S. T. Dougherty, J. Gildea, A. Korban and A. Kaya, New extremal self-dual binary codes of length 68 via composite construction, $\mathbb{F}_2+u\mathbb{F}_2$ lifts, extensions and neighbors, Int. J. Inf. Coding Theory, 5 (2018), 211-226.
|
[7]
|
S. T. Dougherty, J. Gildea, A. Korban and A. Kaya, Composite matrices from group rings, composite $G$-codes and constructions of self-dual codes, Des. Codes Cryptogr., 89 (2021), 1615-1638.
doi: 10.1007/s10623-021-00882-8.
|
[8]
|
S. T. Dougherty, J. Gildea, A. Korban, A. Kaya, A. Tylyshchak and B. Yildiz, Bordered constructions of self- dual codes from group rings and new extremal binary self-dual codes, Finite Fields Appl., 57 (2019), 108-127.
doi: 10.1016/j.ffa.2019.02.004.
|
[9]
|
S. T. Dougherty, J. Gildea, R. Taylor and A. Tylshchak, Group rings, $G$-codes and constructions of self-dual and formally self-dual codes, Des. Codes Cryptogr., 86 (2018), 2115-2138.
doi: 10.1007/s10623-017-0440-7.
|
[10]
|
S. T. Dougherty, T. A. Gulliver and M. Harada, Extremal binary self dual codes, IEEE Trans. Inform. Theory, 43 (1997), 2036-2047.
doi: 10.1109/18.641574.
|
[11]
|
S. T. Dougherty, J.-L. Kim and P. Solé, Double circulant codes from two class association schemes, Adv. Math. Commun., 1 (2007), 45-64.
doi: 10.3934/amc.2007.1.45.
|
[12]
|
S. T. Dougherty, A. Korban, S. Sahinkaya and D. Ustun, Group matrix ring codes and constructions of self-dual codes, Applicable Algebra in Engineering, Communication and Computing, 2021.
doi: 10.1007/s00200-021-00504-9.
|
[13]
|
J. Gildea, A. Kaya, A. Korban and B. Yildiz, New extremal binary self-dual codes of length 68 from generalized neighbours, Finite Fields Appl., 67 (2020), 101727, 12 pp.
doi: 10.1016/j.ffa.2020.101727.
|
[14]
|
J. Gildea, A. Kaya, R. Taylor and B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl., 51 (2018), 71-92.
doi: 10.1016/j.ffa.2018.01.002.
|
[15]
|
T. A. Gulliver and M. Harada, On double circulant doubly-even self-dual $[72, 36, 12]$ codes and their neighbors, Austalas. J. Comb., 40 (2008), 137-144.
|
[16]
|
A. Korban, All known Type I and Type II $[72, 36, 12]$ binary self-dual codes, available online at https://sites.google.com/view/adriankorban/binary-self-dual-codes.
|
[17]
|
A. Korban, S. Sahinkaya and D. Ustun, A novel genetic search scheme based on nature - Inspired evolutionary algorithms for self-dual codes, arXiv: 2012.12248, in submission.
|
[18]
|
A. Korban, S. Sahinkaya and D. Ustun, New singly and doubly even binary $[72, 36, 12]$ self-dual codes from $M_2(R)G$- group matrix rings, Finite Fields Appl., 76 (2021), Paper No. 101924, 20 pp.
doi: 10.1016/j.ffa.2021.101924.
|
[19]
|
A. Korban, S. Sahinkaya and D. Ustun, An application of the virus optimization algorithm to the problem of finding extremal binary self-dual codes, arXiv: 2103.07739, in submission.
|
[20]
|
A. Korban, S. Sahinkaya and D. Ustun, New extremal binary self-dual codes of length 72 from composite group matrix rings and the neighbour method integrated to the virus optimisation algorithm, in submission.
|
[21]
|
A. Korban, S. Sahinkaya and D. Ustun, New type i binary $[72, 36, 12]$ self-dual codes from composite matrices and $R_1$ lifts, Advances in Mathematics of Communications, 2021.
doi: 10.3934/amc.2021034.
|
[22]
|
A. Korban, S. Sahinkaya and D. Ustun, Generator matrices for the manuscript "New type I binary $[72, 36, 12]$ self-dual codes from $M_6(\mathbb{F}_2)G$ - Group matrix rings by a hybrid search technique based on a neighbourhood-virus optimisation algorithm", available online at https://sites.google.com/view/serap-sahinkaya/generator-matrices.
|
[23]
|
E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inf. Theory, 44 (1998), 134-139.
doi: 10.1109/18.651000.
|
[24]
|
M. Shi, D. Huang, L. Sok and P. Solé, Double circulant self-dual and LCD codes over Galios rings, Adv. Math. Commun., 13 (2019), 171-183.
doi: 10.3934/amc.2019011.
|
[25]
|
M. Shi, L. Qian and P. Solé, On self-dual negacirculant codes of index two and four, Des. Codes Cryptogr., 86 (2018), 2485-2494.
doi: 10.1007/s10623-017-0455-0.
|
[26]
|
M. Shi, L. Sok, P. Solé and S. Çalkavur, Self-dual codes and orthogonal matrices over large finite fields, Finite Fields Appl., 54 (2018), 297-314.
doi: 10.1016/j.ffa.2018.08.011.
|