\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Binary self-dual and LCD codes from generator matrices constructed from two group ring elements by a heuristic search scheme

  • *Corresponding author: Serap Șahinkaya

    *Corresponding author: Serap Șahinkaya 

The third author is supported by TUBITAK grant no: 1059B192000947

Abstract / Introduction Full Text(HTML) Figure(0) / Table(2) Related Papers Cited by
  • We present a generator matrix of the form $ [ \sigma(v_1) \ | \ \sigma(v_2)] $, where $ v_1 \in RG $ and $ v_2\in RH $, for finite groups $ G $ and $ H $ of order $ n $ for constructing self-dual codes and linear complementary dual codes over the finite Frobenius ring $ R $. In general, many of the constructions to produce self-dual codes forces the code to be an ideal in a group ring which implies that the code has a rich automorphism group. Unlike the traditional cases, codes constructed from the generator matrix presented here are not ideals in a group ring, which enables us to find self-dual and linear complementary dual codes that are not found using more traditional techniques. In addition to that, by using this construction, we improve $ 10 $ of the previously known lower bounds on the largest minimum weights of binary linear complementary dual codes for some lengths and dimensions. We also obtain $ 82 $ new binary linear complementary dual codes, $ 50 $ of which are either optimal or near optimal of lengths $ 41 \leq n \leq 61 $ which are new to the literature.

    Mathematics Subject Classification: Primary: 94B05; Secondary: 94B15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  New Binary Type Ⅰ Codes of Length 72

    Generator Matrix Type $ \gamma $ $ \beta $ $ |Aut(C_i)| $
    $ C_{1} $ $ \mathcal{G}_{1} $ $ W_{72, 1} $ $ 2 $ $ 226 $ $ 1 $
    $ C_{2} $ $ \mathcal{G}_{1} $ $ W_{72, 1} $ $ 4 $ $ 230 $ $ 1 $
    $ C_{3} $ $ \mathcal{G}_{2} $ $ W_{72, 1} $ $ 14 $ $ 248 $ $ 1 $
    $ C_{4} $ $ \mathcal{G}_{2} $ $ W_{72, 1} $ $ 1 $ $ 184 $ $ 1 $
    $ C_{5} $ $ \mathcal{G}_{3} $ $ W_{72, 1} $ $ 10 $ $ 318 $ $ 4 $
    $ C_{6} $ $ \mathcal{G}_{3} $ $ W_{72, 1} $ $ 4 $ $ 217 $ $ 4 $
    $ C_{7} $ $ \mathcal{G}_{4} $ $ W_{72, 1} $ $ 12 $ $ 315 $ $ 6 $
    $ C_{8} $ $ \mathcal{G}_{4} $ $ W_{72, 1} $ $ 6 $ $ 295 $ $ 12 $
    $ C_{9} $ $ \mathcal{G}_{5} $ $ W_{72, 1} $ $ 2 $ $ 229 $ $ 2 $
    $ C_{10} $ $ \mathcal{G}_{5} $ $ W_{72, 1} $ $ 14 $ $ 267 $ $ 2 $
    $ C_{11} $ $ \mathcal{G}_{6} $ $ W_{72, 1} $ $ 2 $ $ 225 $ $ 2 $
    $ C_{12} $ $ \mathcal{G}_{6} $ $ W_{72, 1} $ $ 4 $ $ 281 $ $ 4 $
    $ C_{13} $ $ \mathcal{G}_{6} $ $ W_{72, 1} $ $ 4 $ $ 236 $ $ 4 $
    $ C_{14} $ $ \mathcal{G}_{7} $ $ W_{72, 1} $ $ 18 $ $ 297 $ $ 18 $
     | Show Table
    DownLoad: CSV

    Table 2.  LCD Codes, where $ 41 \leq n \leq 61 $ and $ 15 \leq k \leq 30 $

    Generator Matrix $ [n, k, d] $ Optimal/Near Optimal Generator Matrix $ [n, k, d] $ Optimal/Near Optimal
    $ \mathcal{G}_8 $ $ [30, 15, 7] $ Near Optimal $ \mathcal{G}_8 $ $ [32, 16, 8] $ Optimal
    Extended $ \mathcal{G}_8 $ $ [33, 16, 8] $ Optimal Punctered $ \mathcal{G}_8 $ $ [31, 16, 7] $ Near Optimal
    Shortened $ \mathcal{G}_8 $ $ [31, 15, 8] $ Optimal $ \mathcal{G}_8 $ $ [34, 17, 8] $ Optimal
    Punctered $ \mathcal{G}_8 $ $ [33, 17, 7] $ Near Optimal Shortened $ \mathcal{G}_8 $ $ [33, 16, 8] $ Optimal
    $ \mathcal{G}_8 $ $ [36, 18, 8] $ Optimal Shortened $ \mathcal{G}_8 $ $ [35, 17, 8] $ Optimal
    Extended $ \mathcal{G}_8 $ $ [41, 16, 10] $ $ - $ $ \mathcal{G}_8 $ $ [42, 18, 10] $ -
    Extended $ \mathcal{G}_8 $ $ [43, 18, 10] $ $ - $ Punctered $ \mathcal{G}_8 $ $ [41, 18, 9] $ -
    $ \mathcal{G}_8 $ $ [42, 20, 10] $ Optimal Extended $ \mathcal{G}_8 $ $ [43, 20, 10] $ Near Optimal
    Punctered $ \mathcal{G}_8 $ $ [41, 20, 9] $ Near Optimal $ \mathcal{G}_8 $ $ [42, 19, 9] $ -
    Punctered $ \mathcal{G}_8 $ $ [41, 19, 8] $ - $ \mathcal{G}_8 $ $ [42, 21, 9] $ Near Optimal
    Punctered $ \mathcal{G}_8 $ $ [41, 21, 8] $ Near Optimal $ \mathcal{G}_8 $ $ [44, 20, 10] $ -
    Extended $ \mathcal{G}_8 $ $ [45, 20, 10] $ - Punctered $ \mathcal{G}_8 $ $ [43, 20, 9] $ -
    $ \mathcal{G}_8 $ $ [44, 22, 9] $ Near Optimal Extended $ \mathcal{G}_8 $ $ [45, 22, 10] $ Near Optimal
    Punctered $ \mathcal{G}_8 $ $ [43, 22, 8] $ Near Optimal Shortened $ \mathcal{G}_8 $ $ [43, 21, 9] $ Near Optimal
    $ \mathcal{G}_9 $ $ [46, 22, 10] $ - Extended $ \mathcal{G}_8 $ $ [47, 22, 10] $ -
    Punctered $ \mathcal{G}_8 $ $ [45, 22, 9] $ - $ \mathcal{G}_8 $ $ [46, 23, 9] $ -
    Punctered $ \mathcal{G}_8 $ $ [45, 23, 8] $ - $ \mathcal{G}_8 $ $ [48, 24, 9] $ -
    Extended $ \mathcal{G}_8 $ $ [49, 24, 10] $ - Punctered $ \mathcal{G}_8 $ $ [47, 24, 8] $ -
    Shortened $ \mathcal{G}_8 $ $ [47, 23, 9] $ - $ \mathcal{G}_8 $ $ [50, 21, 12] $ Optimal
    Punctered $ \mathcal{G}_8 $ $ [49, 21, 11] $ Optimal Shortened $ \mathcal{G}_8 $ $ [49, 20, 12] $ Optimal
    $ \mathcal{G}_8 $ $ [50, 24, 10] $ - Extended $ \mathcal{G}_8 $ $ [51, 24, 10] $ -
    Punctered $ \mathcal{G}_8 $ $ [49, 24, 9] $ - $ \mathcal{G}_8 $ $ [50, 25, 10] $ Optimal
    Punctered $ \mathcal{G}_8 $ $ [49, 25, 9] $ Near Optimal Shortened $ \mathcal{G}_8 $ $ [49, 24, 10] $ -
    $ \mathcal{G}_8 $ $ [52, 24, 12] $ Optimal Extended $ \mathcal{G}_8 $ $ [53, 24, 12] $ Optimal
    Punctered $ \mathcal{G}_8 $ $ [51, 24, 11] $ Optimal $ \mathcal{G}_8 $ $ [52, 26, 10] $ Optimal
    Extended $ \mathcal{G}_8 $ $ [53, 26, 10] $ Near Optimal Punctered $ \mathcal{G}_9 $ $ [51, 26, 9] $ Near Optimal
    Shortened $ \mathcal{G}_8 $ $ [51, 25, 10] $ Near Optimal $ \mathcal{G}_8 $ $ [54, 26, 12] $ Optimal
    Extended $ \mathcal{G}_8 $ $ [55, 26, 12] $ Optimal Punctered $ \mathcal{G}_8 $ $ [53, 26, 11] $ Optimal
    $ \mathcal{G}_8 $ $ [54, 24, 12] $ Optimal Extended $ \mathcal{G}_8 $ $ [55, 24, 12] $ Optimal
    Punctered $ \mathcal{G}_8 $ $ [53, 24, 11] $ Near Optimal $ \mathcal{G}_8 $ $ [54, 25, 11] $ Near Optimal
    Punctered $ \mathcal{G}_8 $ $ [53, 25, 10] $ - Shortened $ \mathcal{G}_8 $ $ [53, 24, 11] $ Near Optimal
    $ \mathcal{G}_8 $ $ [54, 27, 10] $ Near Optimal Punctered $ \mathcal{G}_8 $ $ [53, 27, 9] $ Near Optimal
    Shortened $ \mathcal{G}_8 $ $ [53, 26, 10] $ Near Optimal $ \mathcal{G}_8 $ $ [56, 24, 12] $ Optimal
    Extended $ \mathcal{G}_8 $ $ [57, 24, 12] $ Near Optimal Punctered $ \mathcal{G}_8 $ $ [55, 24, 11] $ Near Optimal
    $ \mathcal{G}_8 $ $ [56, 28, 11] $ Near Optimal Extended $ \mathcal{G}_8 $ $ [57, 28, 12] $ Optimal
    Punctered $ \mathcal{G}_8 $ $ [55, 28, 10] $ Near Optimal Shortened $ \mathcal{G}_8 $ $ [55, 27, 11] $ Near Optimal
    $ \mathcal{G}_8 $ $ [58, 28, 12] $ Optimal Extended $ \mathcal{G}_8 $ $ [59, 28, 12] $ Optimal
    Punctered $ \mathcal{G}_8 $ $ [57, 28, 11] $ Optimal $ \mathcal{G}_8 $ $ [58, 29, 11] $ Near Optimal
    Punctered $ \mathcal{G}_8 $ $ [57, 29, 10] $ - Shortened $ \mathcal{G}_8 $ $ [57, 28, 11] $ Near Optimal
    $ \mathcal{G}_8 $ $ [60, 28, 12] $ Optimal Extended $ \mathcal{G}_8 $ $ [61, 28, 12] $ Near Optimal
    Punctered $ \mathcal{G}_8 $ $ [59, 28, 11] $ Near Optimal $ \mathcal{G}_8 $ $ [60, 30, 11] $ Near Optimal
    Extended $ \mathcal{G}_8 $ $ [61, 30, 12] $ Optimal Punctured $ \mathcal{G}_8 $ $ [59, 30, 10] $ -
    Shortened $ \mathcal{G}_8 $ $ [59, 29, 11] $ Near Optimal $ \mathcal{G}_8 $ $ [60, 26, 11] $ -
    Extended $ \mathcal{G}_8 $ $ [61, 26, 12] $ - Punctered $ \mathcal{G}_8 $ $ [59, 26, 10] $ -
    Shortened $ \mathcal{G}_8 $ $ [59, 25, 11] $ - $ \mathcal{G}_9 $ $ [60, 24, 10] $ -
    Extended $ \mathcal{G}_9 $ $ [61, 24, 10] $ - Punctered $ \mathcal{G}_9 $ $ [59, 24, 10] $ -
     | Show Table
    DownLoad: CSV
  • [1] M. Araya and M. Harada, On the minimum weights of binary linear complementary dual codes, Cryptogr. Commun., 12 (2020), 285-300.  doi: 10.1007/s12095-019-00402-5.
    [2] M. ArayaM. Harada and K. Saito, Characterization and classification of optimal LCD codes, Des. Codes Cryptogr., 89 (2021), 617-640.  doi: 10.1007/s10623-020-00834-8.
    [3] W. BosmaJ. Cannon and C. Playoust, The Magma algebra system. Ⅰ. The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.
    [4] S. Bouyuklieva, Optimal binary LCD codes, Des. Codes Cryptogr., 89 (2021), 2445-2461.  doi: 10.1007/s10623-021-00929-w.
    [5] R. Dontcheva, New binary self-dual $[70, 35, 12]$ and binary $[72, 36, 12]$ self-dual doubly-even codes, Serdica Math. J., 27 (2022), 287-302. 
    [6] S. T. Dougherty, Algebraic Coding Theory over Finite Commutative Rings, SpringerBriefs in Mathematics, Springer, Cham, 2017. doi: 10.1007/978-3-319-59806-2.
    [7] S. T. Dougherty, J. Gildea and A. Kaya, $2^n$ Bordered constructions of self-dual codes from group rings, Finite Fields Appl., 67 (2020), 101692, 17 pp. doi: 10.1016/j.ffa.2020.101692.
    [8] S. T. DoughertyJ. GildeaA. KayaA. KorbanA. Tylyshchak and B. Yildiz, Bordered constructions of self-dual codes from group rings and new extremal binary self-dual codes, Finite Fields Appl., 57 (2019), 108-127.  doi: 10.1016/j.ffa.2019.02.004.
    [9] S. T. DoughertyJ. GildeaA. Kaya and B. Yildiz, New self-dual and formally self-dual codes from group ring constructions, Adv. Math. Commun., 14 (2020), 11-22.  doi: 10.3934/amc.2020002.
    [10] S. T. DoughertyJ. Gildea and A. Korban, Extending an established isomorphism between group rings and a subring of the $n \times n$ matrices, Internat. J. Algebra Comput., 31 (2021), 471-490.  doi: 10.1142/S0218196721500223.
    [11] S. T. DoughertyJ. GildeaA. Korban and A. Kaya, Composite matrices from group rings, composite $G$-codes and constructions of self-dual codes, Des. Codes Cryptogr., 89 (2021), 1615-1638.  doi: 10.1007/s10623-021-00882-8.
    [12] S. T. DoughertyJ. GildeaR. Taylor and A. Tylshchak, Group rings, $G$-codes and constructions of self-dual and formally self-dual codes, Des. Codes and Cryptog., 86 (2018), 2115-2138.  doi: 10.1007/s10623-017-0440-7.
    [13] S. T. DoughertyT. A. Gulliver and M. Harada, Extremal binary self dual codes, IEEE Trans. Inform. Theory, 43 (1997), 2036-2047.  doi: 10.1109/18.641574.
    [14] S. T. DoughertyJ. L. KimB. OzkayaL. Sok and P. Sole, The combinatorics of LCD codes: Linear programming bound and orthogonal matrices, Int. J. Inf. Coding Theory, 4 (2017), 116-128.  doi: 10.1504/IJICOT.2017.083827.
    [15] S. T. DoughertyJ.-L. Kim and P. Sole, Double circulant codes from two class association schemes, Adv. Math. of Commun., 1 (2007), 45-64.  doi: 10.3934/amc.2007.1.45.
    [16] S. T. Dougherty, A. Korban, S. Sahinkaya and D. Ustun, Group matrix ring codes and constructions of self-dual codes, Appl. Algebra Engrg. Comm. Comput., (2021), https://doi.org/10.1007/s00200-021-00504-9.
    [17] L. GalvezJ.-L. KimN. LeeY. G. Roe and B.-S. Won, Some bounds on binary LCD codes, Cryptogr. Commun., 10 (2018), 719-728.  doi: 10.1007/s12095-017-0258-1.
    [18] J. GildeaA. KayaR. Taylor and B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl., 51 (2018), 71-92.  doi: 10.1016/j.ffa.2018.01.002.
    [19] J. GildeaA. KorbanA. Kaya and B. Yildiz, Constructing self-dual codes from group rings and reverse circulant matrices, Adv. in Math. Commun., 15 (2021), 471-485.  doi: 10.3934/amc.2020077.
    [20] M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, (2022), http://www.codetables.de.
    [21] T. A. Gulliver and M. Harada, On double circulant doubly-even self-dual $[72, 36, 12]$ codes and their neighbors, Austalas. J. Comb., 40 (2008), 137-144. 
    [22] K. Ishizuka, K. Saito, Construction for both self-dual codes and LCD codes, arXiv: 2108.12544.
    [23] A. Korban, All known Type Ⅰ and Type Ⅱ $[72, 36, 12]$ binary self-dual codes, available online at https://sites.google.com/view/adriankorban/binary-self-dual-codes.
    [24] A. Korban, S. Sahinkaya and D. Ustun, A novel genetic search scheme based on nature-inspired evolutionary algorithms for self-dual codes, Adv. Math. Commun..
    [25] J. L. Massey, Linear codes with complementary duals, Discrete Math., 106/107 (1992), 337-342.  doi: 10.1016/0012-365X(92)90563-U.
    [26] E. M. Rains and N. J. A. Sloane, The shadow theory of modular and unimodular lattices, J. Number Theory, 73 (1998), 359-389.  doi: 10.1006/jnth.1998.2306.
    [27] S. Sahinkaya, available online at https://sites.google.com/view/serap-sahinkaya/generator-matrices.
  • 加载中

Tables(2)

SHARE

Article Metrics

HTML views(3377) PDF downloads(806) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return