[1]
|
M. Araya and M. Harada, On the minimum weights of binary linear complementary dual codes, Cryptogr. Commun., 12 (2020), 285-300.
doi: 10.1007/s12095-019-00402-5.
|
[2]
|
M. Araya, M. Harada and K. Saito, Characterization and classification of optimal LCD codes, Des. Codes Cryptogr., 89 (2021), 617-640.
doi: 10.1007/s10623-020-00834-8.
|
[3]
|
W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. Ⅰ. The user language, J. Symbolic Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125.
|
[4]
|
S. Bouyuklieva, Optimal binary LCD codes, Des. Codes Cryptogr., 89 (2021), 2445-2461.
doi: 10.1007/s10623-021-00929-w.
|
[5]
|
R. Dontcheva, New binary self-dual $[70, 35, 12]$ and binary $[72, 36, 12]$ self-dual doubly-even codes, Serdica Math. J., 27 (2022), 287-302.
|
[6]
|
S. T. Dougherty, Algebraic Coding Theory over Finite Commutative Rings, SpringerBriefs in Mathematics, Springer, Cham, 2017.
doi: 10.1007/978-3-319-59806-2.
|
[7]
|
S. T. Dougherty, J. Gildea and A. Kaya, $2^n$ Bordered constructions of self-dual codes from group rings, Finite Fields Appl., 67 (2020), 101692, 17 pp.
doi: 10.1016/j.ffa.2020.101692.
|
[8]
|
S. T. Dougherty, J. Gildea, A. Kaya, A. Korban, A. Tylyshchak and B. Yildiz, Bordered constructions of self-dual codes from group rings and new extremal binary self-dual codes, Finite Fields Appl., 57 (2019), 108-127.
doi: 10.1016/j.ffa.2019.02.004.
|
[9]
|
S. T. Dougherty, J. Gildea, A. Kaya and B. Yildiz, New self-dual and formally self-dual codes from group ring constructions, Adv. Math. Commun., 14 (2020), 11-22.
doi: 10.3934/amc.2020002.
|
[10]
|
S. T. Dougherty, J. Gildea and A. Korban, Extending an established isomorphism between group rings and a subring of the $n \times n$ matrices, Internat. J. Algebra Comput., 31 (2021), 471-490.
doi: 10.1142/S0218196721500223.
|
[11]
|
S. T. Dougherty, J. Gildea, A. Korban and A. Kaya, Composite matrices from group rings, composite $G$-codes and constructions of self-dual codes, Des. Codes Cryptogr., 89 (2021), 1615-1638.
doi: 10.1007/s10623-021-00882-8.
|
[12]
|
S. T. Dougherty, J. Gildea, R. Taylor and A. Tylshchak, Group rings, $G$-codes and constructions of self-dual and formally self-dual codes, Des. Codes and Cryptog., 86 (2018), 2115-2138.
doi: 10.1007/s10623-017-0440-7.
|
[13]
|
S. T. Dougherty, T. A. Gulliver and M. Harada, Extremal binary self dual codes, IEEE Trans. Inform. Theory, 43 (1997), 2036-2047.
doi: 10.1109/18.641574.
|
[14]
|
S. T. Dougherty, J. L. Kim, B. Ozkaya, L. Sok and P. Sole, The combinatorics of LCD codes: Linear programming bound and orthogonal matrices, Int. J. Inf. Coding Theory, 4 (2017), 116-128.
doi: 10.1504/IJICOT.2017.083827.
|
[15]
|
S. T. Dougherty, J.-L. Kim and P. Sole, Double circulant codes from two class association schemes, Adv. Math. of Commun., 1 (2007), 45-64.
doi: 10.3934/amc.2007.1.45.
|
[16]
|
S. T. Dougherty, A. Korban, S. Sahinkaya and D. Ustun, Group matrix ring codes and constructions of self-dual codes, Appl. Algebra Engrg. Comm. Comput., (2021), https://doi.org/10.1007/s00200-021-00504-9.
|
[17]
|
L. Galvez, J.-L. Kim, N. Lee, Y. G. Roe and B.-S. Won, Some bounds on binary LCD codes, Cryptogr. Commun., 10 (2018), 719-728.
doi: 10.1007/s12095-017-0258-1.
|
[18]
|
J. Gildea, A. Kaya, R. Taylor and B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl., 51 (2018), 71-92.
doi: 10.1016/j.ffa.2018.01.002.
|
[19]
|
J. Gildea, A. Korban, A. Kaya and B. Yildiz, Constructing self-dual codes from group rings and reverse circulant matrices, Adv. in Math. Commun., 15 (2021), 471-485.
doi: 10.3934/amc.2020077.
|
[20]
|
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, (2022), http://www.codetables.de.
|
[21]
|
T. A. Gulliver and M. Harada, On double circulant doubly-even self-dual $[72, 36, 12]$ codes and their neighbors, Austalas. J. Comb., 40 (2008), 137-144.
|
[22]
|
K. Ishizuka, K. Saito, Construction for both self-dual codes and LCD codes, arXiv: 2108.12544.
|
[23]
|
A. Korban, All known Type Ⅰ and Type Ⅱ $[72, 36, 12]$ binary self-dual codes, available online at https://sites.google.com/view/adriankorban/binary-self-dual-codes.
|
[24]
|
A. Korban, S. Sahinkaya and D. Ustun, A novel genetic search scheme based on nature-inspired evolutionary algorithms for self-dual codes, Adv. Math. Commun..
|
[25]
|
J. L. Massey, Linear codes with complementary duals, Discrete Math., 106/107 (1992), 337-342.
doi: 10.1016/0012-365X(92)90563-U.
|
[26]
|
E. M. Rains and N. J. A. Sloane, The shadow theory of modular and unimodular lattices, J. Number Theory, 73 (1998), 359-389.
doi: 10.1006/jnth.1998.2306.
|
[27]
|
S. Sahinkaya, available online at https://sites.google.com/view/serap-sahinkaya/generator-matrices.
|