doi: 10.3934/amc.2022043
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Infinite families of $ t $-designs and strongly regular graphs from punctured codes

School of Science, Chang'an University, Xi'an 710064, China

*Corresponding author: Ziling Heng

Received  February 2022 Revised  May 2022 Early access June 2022

Fund Project: The first author was supported in part by the National Natural Science Foundation of China under Grant 11901049, in part by the Young Talent Fund of University Association for Science and Technology in Shaanxi, China, under Grant 20200505 and in part by the Fundamental Research Funds for the Central Universities, CHD, under Grant 300102122202. The third author was supported by the Natural Science Basic Research Program of Shaanxi, China, under Grant 2021JM-149

The puncturing technique is sometimes efficient in constructing projective codes from original codes which are not projective. In this paper, several families of projective linear codes punctured from reducible cyclic codes, special linear codes or irreducible cyclic codes are investigated. The parameters and weight enumerators of the punctured codes and their duals are explicitly determined. Some of the codes are optimal and some of the codes are self-orthogonal which can be used to construct quantum codes. Several infinite families of combinatorial $ 2 $-designs and $ 3 $-designs including some families of Steiner systems are constructed from the punctured codes and their duals. Besides, infinite families of strongly regular graphs are also derived from some families of two-weight projective codes.

Citation: Ziling Heng, Dexiang Li, Fenjin Liu, Weiqiong Wang. Infinite families of $ t $-designs and strongly regular graphs from punctured codes. Advances in Mathematics of Communications, doi: 10.3934/amc.2022043
References:
[1]

E. F. Assmus and H. F. Mattson, Coding and combinatorics, SIAM Review, 16 (1974), 349-388.  doi: 10.1137/1016056.

[2]

I. BouyuklievV. FackW. Willems and J. Winne, Projective two-weight codes with small parameters and their corresponding graphs, Des. Codes Cryptogr., 41 (2006), 59-78.  doi: 10.1007/s10623-006-0019-1.

[3]

R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. Lond. Math. Soc., 18 (1986), 97-122.  doi: 10.1112/blms/18.2.97.

[4]

C. CarletC. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes, IEEE Trans. Inform. Theory, 51 (2005), 2089-2102.  doi: 10.1109/TIT.2005.847722.

[5]

D. Crnkovi$\acute{c}$, A. $\check{S}$vob and V. D. Tonchev, Cyclotomic trace codes, Algorithms, 12 (2019), Paper No. 168, 10 pp. doi: 10.3390/a12080168.

[6]

C. Ding, Codes from Difference Sets, World Scientific, Singapore, 2015.

[7]

C. Ding, Designs from Linear Codes, orld Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019.

[8]

C. Ding, An infinite family of Steiner systems $S(2, 4, 2^m)$ from cyclic codes, J. Combin. Des., 26 (2018), 127-144.  doi: 10.1002/jcd.21565.

[9]

C. Ding, Infinite families of 3-designs from a type of five-weight codes, Des. Codes Cryptogr., 86 (2018), 703-719.  doi: 10.1007/s10623-017-0352-6.

[10]

C. Ding and C. Li, Infinite families of 2-designs and 3-designs from linear codes, Disc. Math., 340 (2017), 2415-2431.  doi: 10.1016/j.disc.2017.05.013.

[11]

C. DingC. Li and Y. Xia, Another generalisation of the binary Reed–Muller codes and its applications, Finite Fields Appl., 53 (2018), 144-174.  doi: 10.1016/j.ffa.2018.06.006.

[12]

C. DingA. Munemasa and V. Tonchev, Bent vectorial functions, codes and designs, IEEE Trans. Inf. Theory, 65 (2019), 7533-7541.  doi: 10.1109/TIT.2019.2922401.

[13]

C. Ding and H. Niederreiter, Cyclotomic linear codes of order 3, IEEE Trans. Inf. Theory, 53 (2007), 2274-2277.  doi: 10.1109/TIT.2007.896886.

[14]

C. Ding and C. Tang, Combinatorial $t$-designs from special functions, Cryptogr. Commun., 12 (2020), 1011-1033.  doi: 10.1007/s12095-020-00442-2.

[15]

C. Ding and C. Tang, Infinite families of near MDS codes holding $t$-designs, IEEE Trans. Inf. Theory, 66 (2020), 5419-5428.  doi: 10.1109/TIT.2020.2990396.

[16]

K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inf. Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.

[17]

X. DuR. Wang and C. Fan, Infinite families of 2-designs from a class of cyclic codes, J. Combin. Des., 28 (2020), 157-170.  doi: 10.1002/jcd.21682.

[18]

X. DuR. WangC. Tang and Q. Wang, Infinite families of 2-designs from linear codes, Appl. Algebra Engrg. Comm. Comput., 33 (2022), 193-211.  doi: 10.1007/s00200-020-00438-8.

[19]

X. DuR. WangC. Tang and Q. Wang, Infinite families of 2-designs from two classes of binary cyclic codes with three nonzeros, Adv. Math. Commun., 16 (2022), 157-168.  doi: 10.3934/amc.2020106.

[20]

K. Feng and J. Luo, Weight distribution of some reducible cyclic codes, Finite Fields Appl., 14 (2008), 390-409.  doi: 10.1016/j.ffa.2007.03.003.

[21]

J. H. Griesmer, A bound for error-correcting codes, IBM J. Res. Develop., 4 (1960), 532-542.  doi: 10.1147/rd.45.0532.

[22]

Z. HengC. Ding and Z. Zhou, Minimal linear codes over finite fields, Finite Fields Appl., 54 (2018), 176-196.  doi: 10.1016/j.ffa.2018.08.010.

[23]

Z. Heng and Q. Yue, Complete weight distributions of two classes of cyclic codes, Cryptogr. Commun., 9 (2017), 323-343.  doi: 10.1007/s12095-015-0177-y.

[24]

Z. Heng and Q. Yue, A construction of $q$-ary linear codes with two weights, Finite Fields Appli., 48 (2017), 20-42.  doi: 10.1016/j.ffa.2017.07.006.

[25] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge Univ. Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.
[26]

A. KetkarA. Klappenecker and S. Kumar, Nonbinary stablizer codes over finite fields, IEEE Trans. Inf. Theory, 52 (2006), 4892-4914.  doi: 10.1109/TIT.2006.883612.

[27]

C. LiS. BaeJ. AhnS. Yang and Z. Yao, Complete eweight enumerators of some linear codes and their applications, Des. Codes Cryptogr., 81 (2016), 153-168.  doi: 10.1007/s10623-015-0136-9.

[28]

C. LiQ. Yue and F. Li, Weight distributions of cyclic codes with respect to pairwise coprime order elements, Finite Fields Appl., 28 (2014), 94-114.  doi: 10.1016/j.ffa.2014.01.009.

[29]

H. LiangW. Chen and Y. Tang, A class of three-weight cyclic codes, J. of Math. (PRC), 36 (2016), 474-480. 

[30]

R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Boston, 1983.

[31]

G. McGuire, Quasi-symmetric designs and codes meeting the Grey-Rankin bound, J. Combin. Theory Ser. A, 78 (1997), 280-291.  doi: 10.1006/jcta.1997.2765.

[32]

S. Mesnager, Linear codes with few weights from weakly regular bent functions based on a generic construction, Cryptogr. Commun., 9 (2017), 71-84.  doi: 10.1007/s12095-016-0186-5.

[33]

C. Tang and C. Ding, An infinite family of linear codes supporting 4-designs, IEEE Trans. Inf. Theory, 67 (2021), 244-254.  doi: 10.1109/TIT.2020.3032600.

[34]

C. TangC. Ding and M. Xiong, Codes, differentially $\delta-$uniform functions, and $t$-designs, IEEE Trans. Inf. Theory, 66 (2020), 3691-3703.  doi: 10.1109/TIT.2019.2959764.

[35]

C. TangC. Ding and M. Xiong, Steiner systems $S(2, 4, \frac{3^m-1}{2})$ and $2$-designs from ternary linear codes of length $\frac{3^m-1}{2}$, Designs Codes Cryptogr., 87 (2019), 2793-2811.  doi: 10.1007/s10623-019-00651-8.

[36]

C. TangN. LiY. QiZ. Zhou and T. Helleseth, Linear codes with two or three weights from weakly regular bent functions, IEEE Trans. Inf. Theory, 62 (2016), 1166-1176.  doi: 10.1109/TIT.2016.2518678.

[37]

C. TangY. Qi and M. Huang, Two-weight and three-weight linear codes from square functions, IEEE Commun. Lett., 20 (2016), 29-32. 

[38]

Z. Zhou and C. Ding, A class of three-weight cyclic codes, Finite Fields Appl., 25 (2014), 79-93.  doi: 10.1016/j.ffa.2013.08.005.

[39]

Z. ZhouN. LiC. Fan and T. Helleseth, Linear codes with two or three weights from quadratic bent functions, Des. Codes Cryptogr., 81 (2016), 283-295.  doi: 10.1007/s10623-015-0144-9.

show all references

References:
[1]

E. F. Assmus and H. F. Mattson, Coding and combinatorics, SIAM Review, 16 (1974), 349-388.  doi: 10.1137/1016056.

[2]

I. BouyuklievV. FackW. Willems and J. Winne, Projective two-weight codes with small parameters and their corresponding graphs, Des. Codes Cryptogr., 41 (2006), 59-78.  doi: 10.1007/s10623-006-0019-1.

[3]

R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. Lond. Math. Soc., 18 (1986), 97-122.  doi: 10.1112/blms/18.2.97.

[4]

C. CarletC. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes, IEEE Trans. Inform. Theory, 51 (2005), 2089-2102.  doi: 10.1109/TIT.2005.847722.

[5]

D. Crnkovi$\acute{c}$, A. $\check{S}$vob and V. D. Tonchev, Cyclotomic trace codes, Algorithms, 12 (2019), Paper No. 168, 10 pp. doi: 10.3390/a12080168.

[6]

C. Ding, Codes from Difference Sets, World Scientific, Singapore, 2015.

[7]

C. Ding, Designs from Linear Codes, orld Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019.

[8]

C. Ding, An infinite family of Steiner systems $S(2, 4, 2^m)$ from cyclic codes, J. Combin. Des., 26 (2018), 127-144.  doi: 10.1002/jcd.21565.

[9]

C. Ding, Infinite families of 3-designs from a type of five-weight codes, Des. Codes Cryptogr., 86 (2018), 703-719.  doi: 10.1007/s10623-017-0352-6.

[10]

C. Ding and C. Li, Infinite families of 2-designs and 3-designs from linear codes, Disc. Math., 340 (2017), 2415-2431.  doi: 10.1016/j.disc.2017.05.013.

[11]

C. DingC. Li and Y. Xia, Another generalisation of the binary Reed–Muller codes and its applications, Finite Fields Appl., 53 (2018), 144-174.  doi: 10.1016/j.ffa.2018.06.006.

[12]

C. DingA. Munemasa and V. Tonchev, Bent vectorial functions, codes and designs, IEEE Trans. Inf. Theory, 65 (2019), 7533-7541.  doi: 10.1109/TIT.2019.2922401.

[13]

C. Ding and H. Niederreiter, Cyclotomic linear codes of order 3, IEEE Trans. Inf. Theory, 53 (2007), 2274-2277.  doi: 10.1109/TIT.2007.896886.

[14]

C. Ding and C. Tang, Combinatorial $t$-designs from special functions, Cryptogr. Commun., 12 (2020), 1011-1033.  doi: 10.1007/s12095-020-00442-2.

[15]

C. Ding and C. Tang, Infinite families of near MDS codes holding $t$-designs, IEEE Trans. Inf. Theory, 66 (2020), 5419-5428.  doi: 10.1109/TIT.2020.2990396.

[16]

K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inf. Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.

[17]

X. DuR. Wang and C. Fan, Infinite families of 2-designs from a class of cyclic codes, J. Combin. Des., 28 (2020), 157-170.  doi: 10.1002/jcd.21682.

[18]

X. DuR. WangC. Tang and Q. Wang, Infinite families of 2-designs from linear codes, Appl. Algebra Engrg. Comm. Comput., 33 (2022), 193-211.  doi: 10.1007/s00200-020-00438-8.

[19]

X. DuR. WangC. Tang and Q. Wang, Infinite families of 2-designs from two classes of binary cyclic codes with three nonzeros, Adv. Math. Commun., 16 (2022), 157-168.  doi: 10.3934/amc.2020106.

[20]

K. Feng and J. Luo, Weight distribution of some reducible cyclic codes, Finite Fields Appl., 14 (2008), 390-409.  doi: 10.1016/j.ffa.2007.03.003.

[21]

J. H. Griesmer, A bound for error-correcting codes, IBM J. Res. Develop., 4 (1960), 532-542.  doi: 10.1147/rd.45.0532.

[22]

Z. HengC. Ding and Z. Zhou, Minimal linear codes over finite fields, Finite Fields Appl., 54 (2018), 176-196.  doi: 10.1016/j.ffa.2018.08.010.

[23]

Z. Heng and Q. Yue, Complete weight distributions of two classes of cyclic codes, Cryptogr. Commun., 9 (2017), 323-343.  doi: 10.1007/s12095-015-0177-y.

[24]

Z. Heng and Q. Yue, A construction of $q$-ary linear codes with two weights, Finite Fields Appli., 48 (2017), 20-42.  doi: 10.1016/j.ffa.2017.07.006.

[25] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge Univ. Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.
[26]

A. KetkarA. Klappenecker and S. Kumar, Nonbinary stablizer codes over finite fields, IEEE Trans. Inf. Theory, 52 (2006), 4892-4914.  doi: 10.1109/TIT.2006.883612.

[27]

C. LiS. BaeJ. AhnS. Yang and Z. Yao, Complete eweight enumerators of some linear codes and their applications, Des. Codes Cryptogr., 81 (2016), 153-168.  doi: 10.1007/s10623-015-0136-9.

[28]

C. LiQ. Yue and F. Li, Weight distributions of cyclic codes with respect to pairwise coprime order elements, Finite Fields Appl., 28 (2014), 94-114.  doi: 10.1016/j.ffa.2014.01.009.

[29]

H. LiangW. Chen and Y. Tang, A class of three-weight cyclic codes, J. of Math. (PRC), 36 (2016), 474-480. 

[30]

R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Boston, 1983.

[31]

G. McGuire, Quasi-symmetric designs and codes meeting the Grey-Rankin bound, J. Combin. Theory Ser. A, 78 (1997), 280-291.  doi: 10.1006/jcta.1997.2765.

[32]

S. Mesnager, Linear codes with few weights from weakly regular bent functions based on a generic construction, Cryptogr. Commun., 9 (2017), 71-84.  doi: 10.1007/s12095-016-0186-5.

[33]

C. Tang and C. Ding, An infinite family of linear codes supporting 4-designs, IEEE Trans. Inf. Theory, 67 (2021), 244-254.  doi: 10.1109/TIT.2020.3032600.

[34]

C. TangC. Ding and M. Xiong, Codes, differentially $\delta-$uniform functions, and $t$-designs, IEEE Trans. Inf. Theory, 66 (2020), 3691-3703.  doi: 10.1109/TIT.2019.2959764.

[35]

C. TangC. Ding and M. Xiong, Steiner systems $S(2, 4, \frac{3^m-1}{2})$ and $2$-designs from ternary linear codes of length $\frac{3^m-1}{2}$, Designs Codes Cryptogr., 87 (2019), 2793-2811.  doi: 10.1007/s10623-019-00651-8.

[36]

C. TangN. LiY. QiZ. Zhou and T. Helleseth, Linear codes with two or three weights from weakly regular bent functions, IEEE Trans. Inf. Theory, 62 (2016), 1166-1176.  doi: 10.1109/TIT.2016.2518678.

[37]

C. TangY. Qi and M. Huang, Two-weight and three-weight linear codes from square functions, IEEE Commun. Lett., 20 (2016), 29-32. 

[38]

Z. Zhou and C. Ding, A class of three-weight cyclic codes, Finite Fields Appl., 25 (2014), 79-93.  doi: 10.1016/j.ffa.2013.08.005.

[39]

Z. ZhouN. LiC. Fan and T. Helleseth, Linear codes with two or three weights from quadratic bent functions, Des. Codes Cryptogr., 81 (2016), 283-295.  doi: 10.1007/s10623-015-0144-9.

Table 1.  The weight distribution of $ \widehat{ {\mathcal{C}}} $ in Lemma 3.1
Weight Frequency
$ 0 $ $ 1 $
$ p^{m-1}-p^{(m+e-2)/2} $ $ (p^m-1)(p^{m-e}+p^{(m-e)/2})/2 $
$ p^{m-1} $ $ (p^m-1)(p^m-p^{m-e}+1) $
$ p^{m-1}+p^{(m+e-2)/2} $ $ (p^m-1)(p^{m-e}-p^{(m-e)/2})/2 $
Weight Frequency
$ 0 $ $ 1 $
$ p^{m-1}-p^{(m+e-2)/2} $ $ (p^m-1)(p^{m-e}+p^{(m-e)/2})/2 $
$ p^{m-1} $ $ (p^m-1)(p^m-p^{m-e}+1) $
$ p^{m-1}+p^{(m+e-2)/2} $ $ (p^m-1)(p^{m-e}-p^{(m-e)/2})/2 $
Table 2.  Examples of $ \widehat{ {\mathcal{C}}}^\bot $ for $ e = 1 $ and even $ l $
$ m $ $ p $ Parameters of $ \widehat{ {\mathcal{C}}}^\bot $ Optimality
$ 3 $ $ 3 $ $ [13,7,4] $ Almost Optimal
$ 3 $ $ 5 $ $ [31,25,4] $ Best Known
$ 3 $ $ 7 $ $ [57,51,4] $ Best Known
$ 5 $ $ 3 $ $ [121,111,4] $ Almost Optimal
$ m $ $ p $ Parameters of $ \widehat{ {\mathcal{C}}}^\bot $ Optimality
$ 3 $ $ 3 $ $ [13,7,4] $ Almost Optimal
$ 3 $ $ 5 $ $ [31,25,4] $ Best Known
$ 3 $ $ 7 $ $ [57,51,4] $ Best Known
$ 5 $ $ 3 $ $ [121,111,4] $ Almost Optimal
[1]

Roy H. Goodman. NLS bifurcations on the bowtie combinatorial graph and the dumbbell metric graph. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2203-2232. doi: 10.3934/dcds.2019093

[2]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[3]

Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure and Applied Analysis, 2021, 20 (2) : 885-902. doi: 10.3934/cpaa.2020295

[4]

Ayça Çeşmelioğlu, Wilfried Meidl. Bent and vectorial bent functions, partial difference sets, and strongly regular graphs. Advances in Mathematics of Communications, 2018, 12 (4) : 691-705. doi: 10.3934/amc.2018041

[5]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[6]

Dean Crnković, Marija Maksimović, Bernardo Gabriel Rodrigues, Sanja Rukavina. Self-orthogonal codes from the strongly regular graphs on up to 40 vertices. Advances in Mathematics of Communications, 2016, 10 (3) : 555-582. doi: 10.3934/amc.2016026

[7]

Dean Crnković, Ronan Egan, Andrea Švob. Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs. Advances in Mathematics of Communications, 2020, 14 (4) : 591-602. doi: 10.3934/amc.2020032

[8]

Dung Le. On the regular set of BMO weak solutions to $p$-Laplacian strongly coupled nonregular elliptic systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3245-3265. doi: 10.3934/dcdsb.2014.19.3245

[9]

Magdi S. Mahmoud, Mohammed M. Hussain. Control design of linear systems with saturating actuators: A survey. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 413-435. doi: 10.3934/naco.2012.2.413

[10]

Joaquim Borges, Josep Rifà, Victor A. Zinoviev. On $q$-ary linear completely regular codes with $\rho=2$ and antipodal dual. Advances in Mathematics of Communications, 2010, 4 (4) : 567-578. doi: 10.3934/amc.2010.4.567

[11]

Noboru Okazawa, Kentarou Yoshii. Linear evolution equations with strongly measurable families and application to the Dirac equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 723-744. doi: 10.3934/dcdss.2011.4.723

[12]

Michael Kiermaier, Johannes Zwanzger. A $\mathbb Z$4-linear code of high minimum Lee distance derived from a hyperoval. Advances in Mathematics of Communications, 2011, 5 (2) : 275-286. doi: 10.3934/amc.2011.5.275

[13]

María Chara, Ricardo A. Podestá, Ricardo Toledano. The conorm code of an AG-code. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021018

[14]

Rumi Melih Pelen. Three weight ternary linear codes from non-weakly regular bent functions. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022020

[15]

M. B. Paterson, D. R. Stinson, R. Wei. Combinatorial batch codes. Advances in Mathematics of Communications, 2009, 3 (1) : 13-27. doi: 10.3934/amc.2009.3.13

[16]

JiYoon Jung, Carl Mummert, Elizabeth Niese, Michael Schroeder. On erasure combinatorial batch codes. Advances in Mathematics of Communications, 2018, 12 (1) : 49-65. doi: 10.3934/amc.2018003

[17]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[18]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[19]

Hong Man, Yibin Yu, Yuebang He, Hui Huang. Design of one type of linear network prediction controller for multi-agent system. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 727-734. doi: 10.3934/dcdss.2019047

[20]

Lingling Lv, Wei He, Xianxing Liu, Lei Zhang. A robust reduced-order observers design approach for linear discrete periodic systems. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2799-2812. doi: 10.3934/jimo.2019081

2021 Impact Factor: 1.015

Metrics

  • PDF downloads (101)
  • HTML views (33)
  • Cited by (0)

Other articles
by authors

[Back to Top]