\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Parameters of hulls of primitive binary narrow-sense BCH codes and their subcodes

  • *Corresponding author: Chengju Li

    *Corresponding author: Chengju Li

Dedicated to the 60th Birthday of Prof. Cunsheng Ding

The work was supported by the National Natural Science Foundation of China (12071138), the Shanghai Natural Science Foundation (22ZR1419600), the open research fund of National Mobile Communications Research Laboratory (2022D05), and the Shanghai Trusted Industry Internet Software Collaborative Innovation Center

Abstract / Introduction Full Text(HTML) Figure(0) / Table(3) Related Papers Cited by
  • The (Euclidean) hull of a linear code is defined to be the intersection of the code and its Euclidean dual. It is clear that the hulls are self-orthogonal codes, which are an important type of linear codes due to their wide applications in communication and cryptography. Let $ \mathcal C_{(2,n,\delta)} $ be the binary primitive narrow-sense BCH code, where $ n = 2^m-1 $ and $ m $ is a positive integer. In this paper, we will investigate the parameters of the hulls of $ \mathcal C_{(2,n,\delta)} $. The dimension of $ \text{Hull}(\mathcal C_{(2,n,\delta)}) $ will be presented when $ 2 \le \delta \le 2^{\lfloor \frac{m}{2} \rfloor+1}+2^{\lceil \frac{m}{2} \rceil-1}-1 $ with $ m \ge 5 $. Furthermore, we give an improvement on lower bounds of the minimum distances of $ \text{Hull}(\mathcal C_{(2,n,\delta)}) $. We also construct a self-orthogonal subcode of $ \text{Hull}(\mathcal C_{(2,n,\delta)}) $ and investigate the parameters of the self-orthogonal code.

    Mathematics Subject Classification: Primary: 94B05, 11T71; Secondary: 94B15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Hulls with good parameters

    Hull $ [n,k^H,d^H] $ Optimality
    Hull$ (\mathcal C_{(2,31,2)}) $ $ [31,5,16] $ Yes
    Hull$ (\mathcal C_{(2,31,4)}) $ $ [31,10,12] $ Yes
    Hull$ (\mathcal C_{(2,31,6)}) $ $ [31,15,8] $ Yes
    Hull$ (\mathcal C_{(2,31,8)}) $ $ [31,10,12] $ Yes
    Hull$ (\mathcal C_{(2,31,12)}) $ $ [31,5,16] $ Yes
    Hull$ (\mathcal C_{(2,63,2)}) $ $ [63,6,32] $ Yes
    Hull$ (\mathcal C_{(2,63,4)}) $ $ [63,12,24] $ Best known
    Hull$ (\mathcal C_{(2,63,12)}) $ $ [63,27,16] $ Best known
    Hull$ (\mathcal C_{(2,63,16)}) $ $ [63,15,24] $ Yes
    Hull$ (\mathcal C_{(2,63,24)}) $ $ [63,9,28] $ Yes
    Hull$ (\mathcal C_{(2,63,28)}) $ $ [63,6,32] $ Yes
     | Show Table
    DownLoad: CSV

    Table 2.  Lower bounds on the minimum distances of Hull$ (\mathcal{C}_{(2,n,\delta)}) $

    Hull $ [n,k,d] $ Optimality $ d^H \ge $ $ (d\ge, d^\bot \ge) $
    Hull$ (\mathcal C_{(2,31,2)}) $ $ [31,5,16] $ Yes $ 16 $ $ (2, 16) $
    Hull$ (\mathcal C_{(2,31,4)}) $ $ [31,10,12] $ Yes $ 8 $ $ (4, 8) $
    Hull$ (\mathcal C_{(2,31,6)}) $ $ [31,15,8] $ Yes $ 8 $ $ (6, 8) $
    Hull$ (\mathcal C_{(2,63,2)}) $ $ [63,6,32] $ Yes $ 32 $ $ (2, 32) $
    Hull$ (\mathcal C_{(2,63,4)}) $ $ [63,12,24] $ Best known $ 16 $ $ (4, 16) $
    Hull$ (\mathcal C_{(2,63,8)}) $ $ [63,18,16] $ No $ 15 $ $ (8, 8) $
    Hull$ (\mathcal C_{(2,63,10)}) $ $ [63,21,16] $ No $ 15 $ $ (10, 8) $
    Hull$ (\mathcal C_{(2,63,12)}) $ $ [63,27,16] $ Best known $ 14 $ $ (12, 8) $
     | Show Table
    DownLoad: CSV

    Table 3.  The parameters of $ \mathcal{C'} $ with $ m = 5,6 $

    $ m $ $ \delta $ $ k $ $ d $ Optimality of $ \mathcal{C'} $
    $ 5 $ $ 2\sim3 $ $ 0 $ $ 31 $ /
    $ 4\sim5 $ $ 5 $ $ 16 $ Yes
    $ 6\sim11 $ $ 10 $ $ 12 $ Yes
    $ 12\sim15 $ $ 5 $ $ 16 $ Yes
    $ 16\sim31 $ $ 0 $ $ 31 $ /
    $ 6 $ $ 2\sim3 $ $ 0 $ $ 63 $ /
    $ 4\sim5 $ $ 6 $ $ 32 $ Yes
    $ 6\sim7 $ $ 12 $ $ 24 $ Best known
    $ 8\sim9 $ $ 18 $ $ 16 $ No
    $ 10\sim11 $ $ 21 $ $ 16 $ No
    $ 12\sim13 $ $ 27 $ $ 16 $ Best known
    $ 14\sim15 $ $ 21 $ $ 16 $ No
    $ 16\sim23 $ $ 15 $ $ 24 $ Yes
    $ 24\sim27 $ $ 9 $ $ 28 $ Yes
    $ 28\sim31 $ $ 6 $ $ 32 $ Yes
    $ 32\sim63 $ $ 0 $ $ 63 $ /
     | Show Table
    DownLoad: CSV
  • [1] S. A. AlyA. Klappenecker and P. K. Sarvepalli, On quantum and classical BCH codes, IEEE Trans. Inf. Theory, 53 (2007), 1183-1188.  doi: 10.1109/TIT.2006.890730.
    [2] E. F. Assmus Jr. and J. D. Key, Affine and projective planes, Discrete Math., 83 (1990), 161-187.  doi: 10.1016/0012-365X(90)90003-Z.
    [3] D. AugotP. Charpin and N. Sendrier, Studying the locator polynomials of minimum weight codewords of BCH codes, IEEE Trans. Inf. Theory, 38 (1992), 960-973.  doi: 10.1109/18.135638.
    [4] D. Augot and N. Sendrier, Idempotents and the BCH bound, IEEE Trans. Inf. Theory, 40 (1994), 204-207. 
    [5] E. R. Berlekamp, The enumeration of information symbols in BCH codes, Bell Syst. Tech. J., 46 (1967), 1861-1880.  doi: 10.1002/j.1538-7305.1967.tb03175.x.
    [6] A. R. CalderbankE. M. RainsP. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inf. Theory, 44 (1998), 1369-1387.  doi: 10.1109/18.681315.
    [7] P. Charpin, Open problems on cyclic codes, In Handbook of Coding Theory, (eds. V. S. Pless and W. C. Huffman), The Netherlands: Elsevier, 1/2 (1998), 963–1063.
    [8] P. Charpin, On a class of primitive BCH-codes, IEEE Trans. Inf. Theory, 36 (1990), 222-228.  doi: 10.1109/18.50397.
    [9] Y. DesakiT. Fujiwara and T. Kasami, The weight distributions of extended binary primitive BCH codes of length 128, IEEE Trans. Inf. Theory, 43 (1997), 1364-1371.  doi: 10.1109/18.605611.
    [10] C. Ding, Parameters of several classes of BCH codes, IEEE Trans. Inf. Theory, 61 (2015), 5322-5330.  doi: 10.1109/TIT.2015.2470251.
    [11] C. DingX. Du and Z. Zhou, The Bose and minimum distance of a class of BCH codes, IEEE Trans. Inf. Theory, 61 (2015), 2351-2356.  doi: 10.1109/TIT.2015.2409838.
    [12] C. DingC. Fan and Z. Zhou, The dimension and minimum distance of two classes of primitive BCH codes, Finite Field Appl., 45 (2017), 237-263.  doi: 10.1016/j.ffa.2016.12.009.
    [13] Z. DuC. Li and S. Mesnager, Constructions of self-orthogonal codes from hulls of BCH codes and their parameters, IEEE Trans. Inf. Theory, 66 (2020), 6774-6785.  doi: 10.1109/TIT.2020.2991635.
    [14] C. GanC. LiS. Mesnager and H. Qian, On hulls of some primitive BCH codes and self-orthogonal codes, IEEE Trans. Inf. Theory, 67 (2021), 6442-6455.  doi: 10.1109/TIT.2021.3076878.
    [15] B. GongC. Ding and C. Li, The dual codes of several classes of BCH codes, IEEE Trans. Inf. Theory, 68 (2022), 953-964.  doi: 10.1109/TIT.2021.3125933.
    [16] M. Grassl, Bounds on the Minimum Distance of Linear Codes and Quantum Codes, accessed on 2022-3-26. Available from: http://www.codetables.de.
    [17] K. GuendaS. Jitman and T. A. Gulliver, Constructions of good entanglement-assisted quantum error correcting codes, Des. Codes Cryptogr., 86 (2018), 121-136.  doi: 10.1007/s10623-017-0330-z.
    [18] Y. HuangC. LiQ. Wang and Z. Du, Parameters and characterizations of hulls of some projective narrow-sense BCH codes, Des. Codes Cryptogr., 90 (2022), 87-106.  doi: 10.1007/s10623-021-00965-6.
    [19] T. Kasami and S. Lin, Some results on the minimum weight of BCH codes, IEEE Trans. Inf. Theory, 18 (1972), 824-825.  doi: 10.1109/tit.1972.1054903.
    [20] C. LiC. Ding and S. Li, LCD cyclic codes over finite fields, IEEE Trans. Inf. Theory, 63 (2017), 4344-4356.  doi: 10.1109/TIT.2017.2672961.
    [21] S. Li, The minimum distance of some narrow-sense primitive BCH codes, SIAM J. Discrete Math., 31 (2017), 2530-2569.  doi: 10.1137/16M1108431.
    [22] S. LiC. DingC. Li and H. Liu, Two families of LCD BCH codes, IEEE Trans. Inf. Theory, 63 (2017), 5699-5717. 
    [23] S. LiC. DingM. Xiong and G. Ge, Narrow-sense BCH codes over GF(q) with length $n=\frac {q^m-1} {q-1}$, IEEE Trans. Inf. Theory, 63 (2017), 7219-7236.  doi: 10.1109/TIT.2017.2743687.
    [24] H. LiuC. Ding and C. Li, Dimensions of three types of BCH codes over GF(q), Discrete Math., 340 (2017), 1910-1927.  doi: 10.1016/j.disc.2017.04.001.
    [25] Y. LiuR. LiQ. FuL. Lu and Y. Rao, Some binary BCH codes with length $n=2^{m}+1$, Finite Field Appl., 55 (2019), 109-133.  doi: 10.1016/j.ffa.2018.09.005.
    [26] G. LuoX. Cao and X. Chen, MDS codes with hulls of arbitrary dimensions and their quantum error correction, IEEE Trans. Inf. Theory, 65 (2019), 2944-2952.  doi: 10.1109/TIT.2018.2874953.
    [27] H. B. Mann, On the number of information symbols in Bose-Chaudhuri codes, Inf. Control, 5 (1962), 153-162. 
    [28] S. NoguchiX.-N. LuM. Jimbo and Y. Miao, BCH codes with minimum distance proportional to code length, SIAM J. Discrete Math., 35 (2021), 179-193.  doi: 10.1137/19M1260876.
    [29] X. ShiQ. Yue and Y. Wu, The dual-containing primitive BCH codes with the maximum designed distance and their applications to quantum codes, Des. Codes Cryptogr., 87 (2019), 2165-2183.  doi: 10.1007/s10623-019-00610-3.
  • 加载中

Tables(3)

SHARE

Article Metrics

HTML views(1897) PDF downloads(160) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return