[1]
|
S. A. Aly, A. Klappenecker and P. K. Sarvepalli, On quantum and classical BCH codes, IEEE Trans. Inf. Theory, 53 (2007), 1183-1188.
doi: 10.1109/TIT.2006.890730.
|
[2]
|
E. F. Assmus Jr. and J. D. Key, Affine and projective planes, Discrete Math., 83 (1990), 161-187.
doi: 10.1016/0012-365X(90)90003-Z.
|
[3]
|
D. Augot, P. Charpin and N. Sendrier, Studying the locator polynomials of minimum weight codewords of BCH codes, IEEE Trans. Inf. Theory, 38 (1992), 960-973.
doi: 10.1109/18.135638.
|
[4]
|
D. Augot and N. Sendrier, Idempotents and the BCH bound, IEEE Trans. Inf. Theory, 40 (1994), 204-207.
|
[5]
|
E. R. Berlekamp, The enumeration of information symbols in BCH codes, Bell Syst. Tech. J., 46 (1967), 1861-1880.
doi: 10.1002/j.1538-7305.1967.tb03175.x.
|
[6]
|
A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inf. Theory, 44 (1998), 1369-1387.
doi: 10.1109/18.681315.
|
[7]
|
P. Charpin, Open problems on cyclic codes, In Handbook of Coding Theory, (eds. V. S. Pless and W. C. Huffman), The Netherlands: Elsevier, 1/2 (1998), 963–1063.
|
[8]
|
P. Charpin, On a class of primitive BCH-codes, IEEE Trans. Inf. Theory, 36 (1990), 222-228.
doi: 10.1109/18.50397.
|
[9]
|
Y. Desaki, T. Fujiwara and T. Kasami, The weight distributions of extended binary primitive BCH codes of length 128, IEEE Trans. Inf. Theory, 43 (1997), 1364-1371.
doi: 10.1109/18.605611.
|
[10]
|
C. Ding, Parameters of several classes of BCH codes, IEEE Trans. Inf. Theory, 61 (2015), 5322-5330.
doi: 10.1109/TIT.2015.2470251.
|
[11]
|
C. Ding, X. Du and Z. Zhou, The Bose and minimum distance of a class of BCH codes, IEEE Trans. Inf. Theory, 61 (2015), 2351-2356.
doi: 10.1109/TIT.2015.2409838.
|
[12]
|
C. Ding, C. Fan and Z. Zhou, The dimension and minimum distance of two classes of primitive BCH codes, Finite Field Appl., 45 (2017), 237-263.
doi: 10.1016/j.ffa.2016.12.009.
|
[13]
|
Z. Du, C. Li and S. Mesnager, Constructions of self-orthogonal codes from hulls of BCH codes and their parameters, IEEE Trans. Inf. Theory, 66 (2020), 6774-6785.
doi: 10.1109/TIT.2020.2991635.
|
[14]
|
C. Gan, C. Li, S. Mesnager and H. Qian, On hulls of some primitive BCH codes and self-orthogonal codes, IEEE Trans. Inf. Theory, 67 (2021), 6442-6455.
doi: 10.1109/TIT.2021.3076878.
|
[15]
|
B. Gong, C. Ding and C. Li, The dual codes of several classes of BCH codes, IEEE Trans. Inf. Theory, 68 (2022), 953-964.
doi: 10.1109/TIT.2021.3125933.
|
[16]
|
M. Grassl, Bounds on the Minimum Distance of Linear Codes and Quantum Codes, accessed on 2022-3-26. Available from: http://www.codetables.de.
|
[17]
|
K. Guenda, S. Jitman and T. A. Gulliver, Constructions of good entanglement-assisted quantum error correcting codes, Des. Codes Cryptogr., 86 (2018), 121-136.
doi: 10.1007/s10623-017-0330-z.
|
[18]
|
Y. Huang, C. Li, Q. Wang and Z. Du, Parameters and characterizations of hulls of some projective narrow-sense BCH codes, Des. Codes Cryptogr., 90 (2022), 87-106.
doi: 10.1007/s10623-021-00965-6.
|
[19]
|
T. Kasami and S. Lin, Some results on the minimum weight of BCH codes, IEEE Trans. Inf. Theory, 18 (1972), 824-825.
doi: 10.1109/tit.1972.1054903.
|
[20]
|
C. Li, C. Ding and S. Li, LCD cyclic codes over finite fields, IEEE Trans. Inf. Theory, 63 (2017), 4344-4356.
doi: 10.1109/TIT.2017.2672961.
|
[21]
|
S. Li, The minimum distance of some narrow-sense primitive BCH codes, SIAM J. Discrete Math., 31 (2017), 2530-2569.
doi: 10.1137/16M1108431.
|
[22]
|
S. Li, C. Ding, C. Li and H. Liu, Two families of LCD BCH codes, IEEE Trans. Inf. Theory, 63 (2017), 5699-5717.
|
[23]
|
S. Li, C. Ding, M. Xiong and G. Ge, Narrow-sense BCH codes over GF(q) with length $n=\frac {q^m-1} {q-1}$, IEEE Trans. Inf. Theory, 63 (2017), 7219-7236.
doi: 10.1109/TIT.2017.2743687.
|
[24]
|
H. Liu, C. Ding and C. Li, Dimensions of three types of BCH codes over GF(q), Discrete Math., 340 (2017), 1910-1927.
doi: 10.1016/j.disc.2017.04.001.
|
[25]
|
Y. Liu, R. Li, Q. Fu, L. Lu and Y. Rao, Some binary BCH codes with length $n=2^{m}+1$, Finite Field Appl., 55 (2019), 109-133.
doi: 10.1016/j.ffa.2018.09.005.
|
[26]
|
G. Luo, X. Cao and X. Chen, MDS codes with hulls of arbitrary dimensions and their quantum error correction, IEEE Trans. Inf. Theory, 65 (2019), 2944-2952.
doi: 10.1109/TIT.2018.2874953.
|
[27]
|
H. B. Mann, On the number of information symbols in Bose-Chaudhuri codes, Inf. Control, 5 (1962), 153-162.
|
[28]
|
S. Noguchi, X.-N. Lu, M. Jimbo and Y. Miao, BCH codes with minimum distance proportional to code length, SIAM J. Discrete Math., 35 (2021), 179-193.
doi: 10.1137/19M1260876.
|
[29]
|
X. Shi, Q. Yue and Y. Wu, The dual-containing primitive BCH codes with the maximum designed distance and their applications to quantum codes, Des. Codes Cryptogr., 87 (2019), 2165-2183.
doi: 10.1007/s10623-019-00610-3.
|