Article Contents
Article Contents

# The punctured codes of two classes of cyclic codes with few weights

• *Corresponding author: Xiaoqiang Wang

This work was partially supported by National Natural Science Foundation of China under Grant 11971156 and 12001175, and National Key Research and Development Program of China under Grant 2021YFA1000600

• The puncturing technique is one of important tools for constructing new codes from old ones. In recent years, many classes of linear codes with interesting parameters have been obtained with this technique. Based on quadratic Gauss sums, the puncturing technique and cyclotomic classes, we investigate two classes of punctured codes of cyclic codes over finite fields. The weight distribution and the parameters of the duals of these codes are studied. The parameters of these codes are new.

Mathematics Subject Classification: Primary: 94B05; Secondary: 94B15.

 Citation:

• Table 1.  The weight distribution of $\mathcal{C}_{D_0}$

 Weight Multiplicity $0$ $1$ $(p-1)p^{m-2}$ $2p^{2m-2}-2p^{2m-3}+p^{m-2}-1$ $(p-1)p^{m-2}\pm p^{\frac{m}{2}-1}$ $\begin{array}{c}\frac{1}{2}\left(p^{\frac{m}{2}-1}-p^{\frac{m}{2}-2}\right)\Big(p^{\frac{3m}{2}}-p^{\frac{3m}{2}-1}+p^{\frac{3m}{2}-2}\mp p^{m+1}\pm p^m \\ \mp p^{m-2}- p^{\frac{m}{2}}\pm1\Big)\end{array}$ $(p-1)p^{m-2}\pm (p-1)p^{\frac{m}{2}-1}$ $\frac{1}{2}\left(p^{m-4}\mp(p-1)p^{\frac{m}{2}-3}\right)\left(p^m-p\mp(p-1)p^{\frac{m}{2}}\right)$

Table 2.  The weight distribution of $\mathcal{C}_{D_\epsilon}$ for $\epsilon\in {\mathrm{GF}}(p)^*$

 Weight Multiplicity $0$ $1$ $(p-1)p^{m-2}$ $2p^{2m-1}-2p^{2m-2}+p^{m-1}-p$ $(p-1)p^{m-2}\pm p^{\frac{m}{2}-1}$ $\frac{1}{2}(p^{m-1}-p^{m-2})(p^{m+1}-p^m+p^{m-1}\pm p^{\frac{m}{2}}\mp p^{\frac{m}{2}-1}-1)$ $(p-1)p^{m-2}\pm (p-1)p^{\frac{m}{2}-1}$ $\frac{1}{2}\left(p^{2m-3}-p^{m-2}\mp(p-1)p^{\frac{3m}{2}-3}\right)$ $p^{m-1}$ $p-1$

Table 3.  The weight distribution of $\mathcal{C}_D$

 Weight Multiplicity $0$ $1$ $\frac{h(t-1)p^{r-s}}{t}$ $t^2(p^{r}-1)$ $\frac{hp^{r-s}}{2}$ $2(p^{r}-1)$ $\frac{h(2t-1)p^{r-s}}{2t}$ $2t(p^{r}-t)(p^{r}-1)$ $hp^{r-s}$ $(p^{r}-1)(p^{2r}+p^{r}-2tp^{r}+t^2-1)$
•  [1] R. Anderson, C. Ding, T. Helleseth and T. Kløve, How to build robust shared control systems, Des. Codes Cryptogr., 15 (1998), 111-124.  doi: 10.1023/A:1026421315292. [2] A. R. Calderbank and J.-M. Goethala, Three-weight codes and association schemes, Philips J. Res., 39 (1984), 143-152. [3] R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc., 18 (1986), 97-122.  doi: 10.1112/blms/18.2.97. [4] P. Delsarte, On subfield subcodes of modified Reed-Solomon codes (Corresp.), IEEE Trans. Inf. Theory, 21 (1975), 575-576.  doi: 10.1109/tit.1975.1055435. [5] C. Ding, Linear codes from some 2-designs, IEEE Trans. Inf. Theory, 61 (2015), 3265-3275.  doi: 10.1109/TIT.2015.2420118. [6] C. Ding and H. Niederreiter, Cyclotomic linear codes of order 3, IEEE Trans. Inf. Theory, 53 (2007), 2274-2277.  doi: 10.1109/TIT.2007.896886. [7] C. Ding and X. Wang, A coding theory constuction of new systematic authentication codes, Theor. Comput. Sci., 330 (2005), 81-99.  doi: 10.1016/j.tcs.2004.09.011. [8] K. Ding and C. Ding, Binary linear codes with three weights, IEEE Commun. Lett., 18 (2014), 1879-1882. [9] K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inf. Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861. [10] M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Available from: http://www.codetables.de. [11] Z. Heng and Q. Yue, Evaluation of the Hamming weights of a classes of linear codes based on Gauss sums, Des. Codes Cryptogr., 83 (2017), 307-326.  doi: 10.1007/s10623-016-0222-7. [12] C. Li, N. Li, T. Helleseth and C. Ding, The weight distribution of several classes of cyclic codes from APN monomials, IEEE Trans. Inform. Theory, 60 (2014), 4710-4721.  doi: 10.1109/TIT.2014.2329694. [13] C. Li, Q. Yue and F.-W. Fu, A construction of several classes of two-weight and three-weight linear codes, Appl. Algebra Eng. Commun. Comput., 28 (2017), 11-30.  doi: 10.1007/s00200-016-0297-4. [14] R. Lidl and H. Niederreiter, Finite Fields, 2nd edition, Encyclopedia of Mathematics, Cambridge University Press, Cambridge, 1997. [15] Y. Liu, C. Ding and C. Tang, Shortened linear codes over finite fields, IEEE Trans. Inf. Theory, 67 (2021), 5119-5132.  doi: 10.1109/TIT.2021.3087082. [16] J. Luo and K. Feng, On the weight distributions of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008), 5332-5344.  doi: 10.1109/TIT.2008.2006424. [17] C. Ma, L. Zeng, Y. Liu, D. Feng and C. Ding, The weight enumerator of a class of cyclic codes, IEEE Trans. Inf. Theory, 57 (2011), 397-402.  doi: 10.1109/TIT.2010.2090272. [18] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Publishing Company, 1997. [19] S. Mesnager and A. Sinak, Several classes of minimal linear codes with few weights from weakly regular plateaued functions, IEEE Trans. Inf. Theory, 66 (2020), 2296-2310.  doi: 10.1109/TIT.2019.2956130. [20] C. Tang, N. Li, Y. Qi, Z. Zhou and T. Helleseth, Linear codes with two or three weights from weakly regular bent functions, IEEE Trans. Inf. Theory, 62 (2016), 1166-1176.  doi: 10.1109/TIT.2016.2518678. [21] X. Wang, D. Zheng and C. Ding, Some punctured codes of several families of binary linear codes, IEEE Trans. Inf. Theory, 67 (2021), 5133-5148.  doi: 10.1109/TIT.2021.3088146. [22] X. Wang, D. Zheng and H. Liu, Several classes of linear codes and their weight distributions, Appl. Algebra Eng. Commun. Comput., 30 (2019), 75-92.  doi: 10.1007/s00200-018-0359-x. [23] X. Wang, D. Zheng, L. Hu and X. Zeng, The weight distributions of two classes of binary codes, Finite Fields Appl., 34 (2015), 192-207.  doi: 10.1016/j.ffa.2015.01.012. [24] Y. Xia and C. Li, Three-weight ternary linear codes from a family of power functions, Finite Fields Appl., 46 (2017), 17-37.  doi: 10.1016/j.ffa.2017.03.003. [25] D. Zheng and J. Bao, Four classes of linear codes from cyclotomic cosets, Des. Codes Cryptogr., 86 (2018), 1007-1022.  doi: 10.1007/s10623-017-0374-0. [26] D. Zheng, Q. Zhao, X. Wang and Y. Zhang, A class of two or three weights linear codes and their complete weight enumerators, Discrete Math., 344 (2021), 112355.  doi: 10.1016/j.disc.2021.112355. [27] Z. Zhou and C. Ding, Seven classes of three-weight cyclic codes, IEEE Trans. Inf. Theory, 61 (2013), 4120-4126. [28] Z. Zhou, N. Li, C. Fan and T. Helleseth, Linear codes with two or three weights from quadratic bent functions, Des. Codes Cryptogr., 81 (2016), 283-295.  doi: 10.1007/s10623-015-0144-9.

Tables(3)