We consider the random matrix obtained by picking vectors randomly from a large collection of mutually unbiased bases of $ \mathbb{C}^n $, and prove that the spectral distribution converges to the Marchenko-Pastur law. This shows that vectors in mutually unbiased bases behave like random vectors. This phenomenon is similar to that of binary linear codes of dual distance at least 5 ([
Citation: |
[1] |
G. W. Anderson, A. Guionnet and O. Zeitouni, An Introduction to Random Matrices, Cambridge studies in Advanced Mathematics, 118. Cambridge University Press, Cambridge, 2010.
![]() ![]() |
[2] |
B. Babadi, S. S. Ghassemzadeh and V. Tarokh, Group randomness properties of pseudo-noise and Gold sequences, 2011 12th Canadian Workshop on Information Theory (CWIT), (2011), 42-46.
![]() |
[3] |
B. Babadi and V. Tarokh, Spectral distribution of random matrices from binary linear block codes, IEEE Trans. Inform. Theory, 57 (2011), 3955-3962.
doi: 10.1109/TIT.2011.2137330.![]() ![]() ![]() |
[4] |
B. Babadi and V. Tarokh, Spectral distribution of product of pseudorandom matrices formed from binary block codes, IEEE Trans. Inform. Theory, 59 (2013), 970-978.
doi: 10.1109/TIT.2012.2223812.![]() ![]() ![]() |
[5] |
Z. Bai and J. W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices, Second edition, Springer Series in Statistics, Springer, New York, 2010.
doi: 10.1007/978-1-4419-0661-8.![]() ![]() ![]() |
[6] |
S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury and F. Vatan, A new proof for the existence of mutually unbiased bases, Algorithmica, 34 (2002), 512-528.
doi: 10.1007/s00453-002-0980-7.![]() ![]() ![]() |
[7] |
H. Bechmann-Pasquinucci and W. Tittel, Quantum cryptography using larger alphabets, Phys. Rev. A, 61 (2000), 062308, 6 pp.
doi: 10.1103/PhysRevA.61.062308.![]() ![]() ![]() |
[8] |
C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, Theoret. Comput. Sci., 560 (2014), 7-11.
doi: 10.1016/j.tcs.2014.05.025.![]() ![]() ![]() |
[9] |
D. Bruss, Optimal eavesdropping in quantum cryptography with six states, Phys. Rev. Lett., 81 (1998), 3018-3021.
![]() |
[10] |
X. Cao and W.-S. Chou, More constructions of approximately mutually unbiased bases, Bull. Aust. Math. Soc., 93 (2016), 211-222.
doi: 10.1017/S0004972715000994.![]() ![]() ![]() |
[11] |
C. H. Chan, E. Kung and M. Xiong, Random matrices from linear codes and Wigner's semicircle law, IEEE Trans. Inform. Theory, 65 (2019), 6001-6009.
doi: 10.1109/TIT.2019.2912309.![]() ![]() ![]() |
[12] |
P. Delsarte, J. M. Goethals and J. J. Seidel, Bounds for systems of lines, and Jacobi polynomials, Geometry and Combinatorics, (1991), 193-207.
![]() |
[13] |
C. Godsil and A. Roy, Equiangular lines, mutually unbiased bases, and spin models, European J. Combin., 30 (2009), 246-262.
doi: 10.1016/j.ejc.2008.01.002.![]() ![]() ![]() |
[14] |
J. Hall, Mutually Unbiased Bases and Related Structures, PhD thesis, RMIT University, Australia, 2011.
![]() |
[15] |
S. G. Hoggar, $t$-designs in projective spaces, European J. Combin., 3 (1982), 233-254.
doi: 10.1016/S0195-6698(82)80035-8.![]() ![]() ![]() |
[16] |
I. D. Ivonović, Geometrical description of quantal state determination, J. Phys. A, 14 (1981), 3241-3245.
doi: 10.1088/0305-4470/14/12/019.![]() ![]() ![]() |
[17] |
G. A. Kabatiansky and V. I. Levenshtein, On bounds for packings on a Sphere and in space, Problems of Information Transmission, 14 (1978), 1-17.
![]() |
[18] |
A. Klappenecker and M. Rötteler, Constructions of mutually unbiased bases, Finite Fields and Applications, Lecture Notes in Comput. Sci., Springer, Berlin, 2948 (2004), 137-144.
doi: 10.1007/978-3-540-24633-6_10.![]() ![]() ![]() |
[19] |
A. Klappenecker and M. Rötteler, Mutually unbiased bases are complex projective 2-designs, Proceedings International Symposium on Information Theory, ISIT2005, Adelaide, SA, (2005), 1740-1744.
![]() |
[20] |
J. Li and K. Feng, Constructions on approximately mutually unbiased bases by Galois rings, J. Syst. Sci. Complex., 28 (2015), 1440-1448.
doi: 10.1007/s11424-015-3262-6.![]() ![]() ![]() |
[21] |
M. L. Mehta, Random Matrices, Third edition, Pure and Applied Mathematics (Amsterdam), 142. Elsevier/Academic Press, Amsterdam, 2004.
![]() ![]() |
[22] |
S. Pafka, M. Potters and I. Kondor, Exponential weighting and random-matrix-theory-based filtering of financial covariance matrices for portfolio optimization, (2004), http://arXiv.org/abs/cond-mat/0402573.
![]() |
[23] |
J. Schwinger, Unitary operator bases, Proc. Nat. Acad. Sci. U.S.A., 46 (1960), 570-579.
doi: 10.1073/pnas.46.4.570.![]() ![]() ![]() |
[24] |
I. E. Shparlinski and A. Winterhof, Constructions of approximately mutually unbiased bases, LATIN 2006: Theoretical Informatics, Lecture Notes in Comput. Sci., Springer, Berlin, 3887 (2006), 793-799.
doi: 10.1007/11682462_72.![]() ![]() ![]() |
[25] |
I. Soloveychik, Y. Xiang and V. Tarokh, Symmetric pseudo-random matrices, IEEE Trans. Inform. Theory, 64 (2018), 3179-3196.
doi: 10.1109/TIT.2018.2800004.![]() ![]() ![]() |
[26] |
I. Soloveychik, Y. Xiang and V. Tarokh, Pseudo-Wigner matrices, IEEE Trans. Inform. Theory, 64 (2018), 3170-3178.
doi: 10.1109/TIT.2017.2777464.![]() ![]() ![]() |
[27] |
A. M. Tulino and S. Verdú, Random matrix theory and wireless communications, Commun. Inf. Theory, 1 (2004), 1-182.
![]() |
[28] |
G. Wang, M.-Y. Niu and F.-W. Fu, Two new constructions of approximately mutually unbiased bases, Int. J. Quantum Inf., 16 (2018), 1850038, 10 pp.
doi: 10.1142/S0219749918500387.![]() ![]() ![]() |
[29] |
E. P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Ann. of Math., 62 (1955), 548-564.
doi: 10.2307/1970079.![]() ![]() ![]() |
[30] |
J. Wishart, The generalised product moment distribution in samples from a normal multivariate population, Biometrika, 20A (1928), 32-52.
![]() |
[31] |
P. Wocjan and T. Beth, New construction of mutually unbiased bases in square dimensions, Quantum Inf. Comput., 5 (2005), 93-101.
doi: 10.26421/QIC5.2-1.![]() ![]() ![]() |
[32] |
W. K. Wootters and B. D. Fields, Optimal state-determination by mutually unbiased measurements, Ann. Physics, 191 (1989), 363-381.
doi: 10.1016/0003-4916(89)90322-9.![]() ![]() ![]() |
[33] |
J. Xia and M. Xiong, On a question of Babadi and Tarokh, IEEE Trans. Inform. Theory, 60 (2014), 7355-7367.
doi: 10.1109/TIT.2014.2354035.![]() ![]() ![]() |