|
[1]
|
L. M. Adleman and M.-D. A. Huang, Function field sieve method for discrete logarithms over finite fields, Inf. Comput., 151 (1999), 5-16.
doi: 10.1006/inco.1998.2761.
|
|
[2]
|
R. Barbulescu, P. Gaudry, A. Joux and E. Thomé, A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic, In Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, 1-16, 2014.
doi: 10.1007/978-3-642-55220-5_1.
|
|
[3]
|
W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language,Computational algebra and number theory (London, 1993), J. Symbolic Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125.
|
|
[4]
|
H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen and F. Vercauteren, editors, Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman and Hall/CRC, 2005.
doi: 10.1201/9781420034981.
|
|
[5]
|
J.-M. Couveignes and R. Lercier, Elliptic periods for finite fields, Finite Fields and Their Applications, 15 (2009), 1-22.
doi: 10.1016/j.ffa.2008.07.004.
|
|
[6]
|
F. Göloglu and A. Joux, A simplified approach to rigorous degree 2 elimination in discrete logarithm algorithms, Math. Comp., 88 (2019), 2485-2496.
doi: 10.1090/mcom/3404.
|
|
[7]
|
R. Granger, T. Kleinjung and J. Zumbrägel, On the powers of 2, IACR Cryptology ePrint Archive, 2014 (2014), 300.
|
|
[8]
|
R. Granger, T. Kleinjung and J. Zumbrägel, On the discrete logarithm problem in finite fields of fixed characteristic, Trans. Amer. Math. Soc., 370 (2018), 3129-3145.
doi: 10.1090/tran/7027.
|
|
[9]
|
A. Joux and C. Pierrot, Improving the polynomial time precomputation of frobenius representation discrete logarithm algorithms - simplified setting for small characteristic finite fields, In Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, 2014,378-397.
doi: 10.1007/978-3-662-45611-8_20.
|
|
[10]
|
A. Joux and C. Pierrot, Technical history of discrete logarithms in small characteristic finite fields - the road from subexponential to quasi-polynomial complexity, Des. Codes Cryptogr., 78 (2016), 73-85.
doi: 10.1007/s10623-015-0147-6.
|
|
[11]
|
T. Kleinjung and B. Wesolowski, A new perspective on the powers of two descent for discrete logarithms in finite fields, IACR Cryptology ePrint Archive, 2018,647.
|
|
[12]
|
T. Kleinjung and B. Wesolowski, Discrete logarithms in quasi-polynomial time in finite fields of fixed characteristic, J. Amer. Math. Soc., 35 (2022), 581-624, Cryptology ePrint Archive, Report, 2019/751, 2019, https://eprint.iacr.org/2019/751.
doi: 10.1090/jams/985.
|
|
[13]
|
T. Kleinjung and B. Wesolowski, Discrete logarithms in quasi-polynomial time in finite fields of fixed characteristic, Journal of the American Mathematical Society, 35 (2022), 581-624.
doi: 10.1090/jams/985.
|
|
[14]
|
G. Lido, Discrete logarithm over finite fields of small characteristic, Master's thesis, Universita di Pisa, September 2016. Available from https://etd.adm.unipi.it/t/etd-08312016-225452.
|
|
[15]
|
G. Lido, Discrete logarithm over finite fields of small characteristic, Unpublished (personal communication), 2019.
|
|
[16]
|
G. Lido, A provably quasi-polynomial algorithm for the discrete logarithm problem in finite fields of small characteristic, 2022.
|
|
[17]
|
G. Micheli, On the selection of polynomials for the dlp quasi-polynomial time algorithm for finite fields of small characteristic, SIAM Journal on Applied Algebra and Geometry, 3 (2019), 256-265.
doi: 10.1137/18M1177196.
|
|
[18]
|
V. S. Miller, The Weil pairing, and its efficient calculation, J. Cryptology, 17 (2004), 235-261.
doi: 10.1007/s00145-004-0315-8.
|
|
[19]
|
S. C. Pohlig and M. E. Hellman, An improved algorithm for computing logarithms over GF(p) and its cryptographic significance (corresp.), IEEE Transactions on Information Theory, 24 (1978), 106-110.
doi: 10.1109/tit.1978.1055817.
|
|
[20]
|
C. Pomerance, Fast, rigorous factorization and discrete logarithm algorithms, In Discrete Algorithms and Complexity, 1987,119-143.
|
|
[21]
|
H. Stichtenoth, Algebraic Function Fields and Codes, Springer Publishing Company, Incorporated, 2nd edition, 2008.
|
|
[22]
|
E. Ughi, On the number of points of elliptic curves over a finite field and a problem of B. Segre, European Journal of Combinatorics, 4 (1983), 263-270.
doi: 10.1016/S0195-6698(83)80021-3.
|
|
[23]
|
D. Wan, Generators and irreducible polynomials over finite fields, Mathematics of Computation, 66 (1997), 1195-1212.
doi: 10.1090/S0025-5718-97-00835-1.
|
|
[24]
|
W. C. Waterhouse, Abelian varieties over finite fields, Annales Scientifiques de l'Ecole Normale Supérieure, 2 (1969), 521-560.
doi: 10.24033/asens.1183.
|