[1]
|
E. J. Candes and M. B. Wakin, An introduction to compressive sampling, IEEE Signal Process. Mag., 25 (2008)), 21-30.
doi: 10.1109/MSP.2007.914731.
|
[2]
|
J. H. Conway, R. H. Harding and N. J. A. Sloane, Packing lines, planes, etc.: Packings in Grassmannian spaces, Exp. Math., 5 (1996), 139-159. https://projecteuclid.org/journals/experimental-mathematics/volume-5/issue-2/Packing-lines-planes-etc-packings-in-Grassmannian-spaces/em/1047565645.full
|
[3]
|
P. Delsarte, J. J. M. Goethals and J. J. Seidel, Spherical codes and designs, Geometriae Dedicate, 67 (1997), 363-388.
doi: 10.1007/BF03187604.
|
[4]
|
C. Ding, Complex codebooks from combinatorial designs, IEEE Trans. Inf. Theory, 52 (2006), 4229-4235.
doi: 10.1109/TIT.2006.880058.
|
[5]
|
C. Ding and T. Feng, A generic construction of complex codebooks meeting the Welch bound, IEEE Trans. Inf. Theory, 53 (2007), 4245-4250.
doi: 10.1109/TIT.2007.907343.
|
[6]
|
M. Fickus, J. Jasper, D. Mixon and J. Peterson, Tremain equiangular tight frames, Journal of Combinatorial Theory, Series A, 153 (2016), 54-66.
doi: 10.1016/j.jcta.2017.08.005.
|
[7]
|
M. Fickus and D. Mixon, Tables of the existence of equiangular tight frames, arXiv: 1504.00253v2, (2016).
|
[8]
|
M. Fickus, D. G. Mixon and J. Jasper, Equiangular tight frames from hyperovals, IEEE Trans. Inf. Theory, 62 (2016), 5225-5236.
doi: 10.1109/TIT.2016.2587865.
|
[9]
|
M. Fickus, D. G. Mixon and J. C. Tremain, Steiner equiangular tight frames, Linear Algebra Appl., 436 (2012), 1014-1027.
doi: 10.1016/j.laa.2011.06.027.
|
[10]
|
Z. Heng, Nearly optimal codebooks based on generalized Jacobi sums, Discrete Appl. Math., 250 (2018), 227-240.
doi: 10.1016/j.dam.2018.05.017.
|
[11]
|
Z. Heng, C. Ding and Q. Yue, New constructions of asymptotically optimal codebooks with multiplicative characters, IEEE Trans. Inf. Theory, 63 (2017), 6179-6187.
doi: 10.1109/TIT.2017.2693204.
|
[12]
|
S. Hong, H. Park, J.-S. No, T. Helleseth and Y.-S. Kim, Near optimal partial Hadamard codebook construction using binary sequences obtained from quadratic residue mapping, IEEE Trans. Inf. Theory, 60 (2014), 3698-3705.
doi: 10.1109/TIT.2014.2314298.
|
[13]
|
H. Hu and J. Wu, New constructions of codebooks nearly meeting the Welch bound with equality, IEEE Trans. Inf. Theory, 60 (2014), 1348-1355.
doi: 10.1109/TIT.2013.2292745.
|
[14]
|
J. Kovacevic and A. Chebira, An introduction to frames, Found. Trends Signal Process., 2 (2008), 1-94.
doi: 10.1561/2000000006.
|
[15]
|
C. Li, Y. Qin and Y. Huang, Two families of nearly optimal codebooks, Des. Codes Cryptogr., 75 (2015), 43-57.
doi: 10.1007/s10623-013-9891-7.
|
[16]
|
R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, (1997).
|
[17]
|
W. Lu, X. Wu, X. Cao and M. Chen, Six constructions of asymptotically optimal codebooks via the character sums, Des. Codes Cryptogr., 88 (2020), 1139-1158.
doi: 10.1007/s10623-020-00735-w.
|
[18]
|
G. Luo and X. Cao, Two constructions of asymptotically optimal codebooks via the hyper Eisenstein sum, IEEE Trans. Inf. Theory, 64 (2018), 6498-6505.
doi: 10.1109/TIT.2017.2777492.
|
[19]
|
G. Luo and X. Cao, New constructions of codebooks asymptotically achieving the Welch bound, in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA, (2018), 2346-2349.
doi: 10.1109/ISIT.2018.8437838.
|
[20]
|
G. Luo and X. Cao, Two constructions of asymptotically optimal codebooks, Crypt. Commun., 11 (2019), 825-838.
doi: 10.1007/s12095-018-0331-4.
|
[21]
|
J. L. Massey and T. Mittelholzer, Welch's bound and sequence sets for code-division multiple-access systems, Sequences II, Springer New York, (1999), 63-78.
|
[22]
|
F. Rahimi, Covering Graphs and Equiangular Tight Frames, Ph.D. Thesis, University of Waterloo, Ontario, (2016) (available at http://hdl.handle.net/10012/10793).
|
[23]
|
J. M. Renes, R. Blume-Kohout, A. J. Scot and C. M. Caves, Symmetric informationally complete quantum measurements, J. Math. Phys., 45 (2004), 2171-2180.
doi: 10.1063/1.1737053.
|
[24]
|
D. V. Sarwate, Meeting the Welch bound with equality, New York, NY, USA: Springer-Verlag, (1999), 79-102.
doi: 10.1007/978-1-4471-0551-0_6.
|
[25]
|
T. Strohmer and R. W. Heath, Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal., 14 (2003), 257-275.
doi: 10.1016/S1063-5203(03)00023-X.
|
[26]
|
L. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Trans. Inf. Theory, 20 (1974), 397-399.
doi: 10.1109/TIT.1974.1055219.
|
[27]
|
X. Wu, W. Lu and X. Cao, Two constructions of asymptotically optimal codebooks via the trace functions, Crypt. Commun., 12 (2020), 1195-1211.
doi: 10.1007/s12095-020-00448-w.
|
[28]
|
P. Xia, S. Zhou and G. B. Giannakis, Achieving the Welch bound with difference sets, IEEE Trans. Inf. Theory, 51 (2005), 1900-1907.
doi: 10.1109/TIT.2005.846411.
|
[29]
|
N. Y. Yu, A construction of codebooks associated with binary sequences, IEEE Trans. Inf. Theory, 58 (2012), 5522-5533.
doi: 10.1109/TIT.2012.2196021.
|
[30]
|
A. Zhang and K. Feng, Two classes of codebooks nearly meeting the Welch bound, IEEE Trans. Inf. Theory, 58 (2012), 2507-2511.
doi: 10.1109/TIT.2011.2176531.
|
[31]
|
A. Zhang and K. Feng, Construction of cyclotomic codebooks nearly meeting the Welch bound, Des. Codes Cryptogr., 63 (2013), 209-224.
doi: 10.1007/s10623-011-9549-2.
|
[32]
|
Z. Zhou and X. Tang, New nearly optimal codebooks from relative difference sets, Adv. Math. Commun., 5 (2011), 521-527.
doi: 10.3934/amc.2011.5.521.
|