[1]
|
E. F. Assmus, Jr and J. D. Key, Affine and projective planes, Discrete Math., 83 (1990), 161-187.
doi: 10.1016/0012-365X(90)90003-Z.
|
[2]
|
N. Aydin, I. Siap and D. K. Ray-Chaudhuri, The structure of 1-generator quasi-twisted codes and new linear codes, Des. Codes Cryptog., 24 (2001), 313-326.
doi: 10.1023/A:1011283523000.
|
[3]
|
G. Bowen, Entanglement required in achieving entanglement-assisted channel capacities, Phys. Rev. A, 66 (2002), 052313.
|
[4]
|
T. A. Brun, I. Devetak and M. H. Hsieh, Catalytic quantum error correction, IEEE Trans. Inf. Theory, 60 (2014), 3073-3089.
doi: 10.1109/TIT.2014.2313559.
|
[5]
|
T. A. Brun, I. Devetak and M. H. Hsieh, Correcting quantum errors with entanglement, Science, 314 (2006), 436-439.
doi: 10.1126/science.1131563.
|
[6]
|
A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via GF(4), IEEE Trans. Inf. Theory, 44 (1998), 1369-1387.
doi: 10.1109/18.681315.
|
[7]
|
P.-L. Cayrel, C. Chabot and A. Necer, Quasi-cyclic codes as codes over rings of matrices, Finite Fields Appl., 16 (2010), 100-115.
doi: 10.1016/j.ffa.2010.01.001.
|
[8]
|
C. Claude, C. Güneri, F. Özbudak, B. Özkaya and S. Patrick, On linear complementary pairs of codes, IEEE Trans. Inf. Theory, 64 (2018), 6583-6589.
doi: 10.1109/TIT.2018.2796125.
|
[9]
|
S. T. Dougherty, Nets and their codes, Des. Codes and Cryptog., 3 (1993), 315-331.
doi: 10.1007/BF01418529.
|
[10]
|
S. T. Dougherty, A coding-theoretic solution to the 36 officer problem, Des. Codes and Cryptog., 4 (1994), 123-128.
doi: 10.1007/BF01578866.
|
[11]
|
S. T. Dougherty, Algebraic Coding Theory over Finite Commutative Rings, Springer-Verlag, Springer-Briefs, 2017.
doi: 10.1007/978-3-319-59806-2.
|
[12]
|
S. T. Dougherty, J.-L. Kim, B. Ozkaya, L. Sok and P. Sole, The combinatorics of LCD codes: Linear programming bound and orthogonal matrices, Int. J. Inf. Coding Theory, 4 (2017), 116-128.
doi: 10.1504/IJICOT.2017.083827.
|
[13]
|
S. T. Dougherty, S. Sahinkaya and D. Ustun, On dihedral codes with one-dimensional hulls and one-dimensional linear complementary pair of dihedral codes, in submission.
|
[14]
|
Y. Edel, Table of quantum twisted codes, Electronic address: https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html.
|
[15]
|
K. Feng and Z. Ma, A finite Gilbert-Varshamov bound for pure stabilizer quantum codes, IEEE Trans. Inf. Theory, 50 (2004), 3323-3325.
doi: 10.1109/TIT.2004.838088.
|
[16]
|
C. Galindo, F. Hernando, R. Matsumoto and D. Ruano, Entanglement-assisted quantum error-correcting codes over arbitrary finite fields, Quant. Inf. Process., 18 (2019), Paper No. 116, 18 pp.
doi: 10.1007/s11128-019-2234-5.
|
[17]
|
L. Galvez, J.-L. Kim, N. Lee, Y. G. Roe and B.-S. Won, Some bounds on binary LCD codes, Cryptogr. Commun., 10 (2018), 719-728.
doi: 10.1007/s12095-017-0258-1.
|
[18]
|
K. Guenda, S. Jitman and T. A. Gulliver, Constructions of good entanglement assisted quantum error correcting codes, Des. Codes Cryptog., 86 (2018), 121-136.
doi: 10.1007/s10623-017-0330-z.
|
[19]
|
C.-Y. Lai and A. Ashikhmin, Linear programming bounds for entanglement-assisted quantum error correcting codes by split weight enumerators, IEEE Trans. Inf. Theory., 64 (2018), 622-639.
doi: 10.1109/TIT.2017.2711601.
|
[20]
|
C.-Y. Lai and T. A. Brun, Entanglement-assisted quantum error correcting codes with imperfect ebits, Phys. Rev. A, 86 (2012), 032319.
|
[21]
|
C. Y. Lai and T. A. Brun, Entanglement increases the error-correcting ability of quantum error-correcting codes, Phys. Rev. A, 88 (2013), 012320.
|
[22]
|
C. Y. Lai, T. A. Brun and M. M. Wilde, Duality in entanglement-assisted quantum error correction, IEEE Trans. Inf. Theory, 59 (2013), 4020-4024.
doi: 10.1109/TIT.2013.2246274.
|
[23]
|
K. Lally and P. Fitzpatrick, Algebraic structure of quasicyclic codes, Discrete Applied Mathematics, 111 (2001), 157-175.
doi: 10.1016/S0166-218X(00)00350-4.
|
[24]
|
J. S. Leon, Computing automorphism groups of error-correcting codes, IEEE Trans. Inform. Theory, 28 (1982), 496-511.
doi: 10.1109/TIT.1982.1056498.
|
[25]
|
J. S. Leon, Permutation group algorithms based on partition. I. Theory and algorithms, J. Symbolic Comput., 12 (1991), 533-583.
doi: 10.1016/S0747-7171(08)80103-4.
|
[26]
|
C. Li and P. Zeng, Constructions of linear codes with one-dimensional hulls, IEEE Trans. Inf. Theory, 65 (2019), 1668-1676.
doi: 10.1109/TIT.2018.2863693.
|
[27]
|
R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.
|
[28]
|
S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes. I. Finite fields, IEEE Trans. Inf. Theory, 47 (2001), 2751-2760.
doi: 10.1109/18.959257.
|
[29]
|
X. Liu, L. Yu and P. Hu, New entanglement-assisted quantum codes from $k$-Galois dual codes, Finite Fields Appl., 55 (2019), 21-32.
doi: 10.1016/j.ffa.2018.09.001.
|
[30]
|
L. Lu, R. Li, L. Guo and Q. Fu, Maximal entanglement-assisted quantum codes constructed from linear codes, Quantum Inf. Process., 14 (2014), 165-182.
doi: 10.1007/s11128-014-0830-y.
|
[31]
|
L. Lu, R. Li, W. Ma, Y. Ma, Y. Liu and H. Cao, Entanglement-assisted quantum MDS codes from constacyclic codes with large minimum distance, Finite Fields Appl., 53 (2018), 309-325.
doi: 10.1016/j.ffa.2018.06.012.
|
[32]
|
L. Lu, X. Zhan, S. Yang and H. Cao, Optimal quaternary hermitian LCD codes, arXiv: 2010.10166.
|
[33]
|
J. L. Massey, Linear codes with complementary duals, Discrete Math., 106/107 (1992), 337-342.
doi: 10.1016/0012-365X(92)90563-U.
|
[34]
|
B. Pang, S. Zhu and X. Kai, Some new bounds on LCD codes over finite fields, Cryptogr. Commun., 12 (2020), 743-755.
doi: 10.1007/s12095-019-00417-y.
|
[35]
|
E. Prange, Cyclic Error-Correcting Codes in Two Symbols, Air Force Cambridge Research Center, AFCRC-TN-57-103, 1957.
|
[36]
|
J. Qian and L. Zhang, On MDS linear complementary dual codes and entanglement-assisted quantum codes, Des. Codes Cryptog., 86 (2018), 1565-1572.
doi: 10.1007/s10623-017-0413-x.
|
[37]
|
L. Q. Qian, X. W. Cao and S. Mesnager, Linear codes with one-dimensional hulls associated with Gaussian sums, Cryptogr. Commun., 13 (2021), 225-243.
doi: 10.1007/s12095-020-00462-y.
|
[38]
|
N. Sendrier, Finding the permutation between equivalent codes: The support splitting algorithm, IEEE Trans. Inf. Theory, 46 (2000), 1193-1203.
doi: 10.1109/18.850662.
|
[39]
|
N. Sendrier and G. Skersys, On the Computation of the Automorphism Group of a Linear Code, Proceedings of IEEE ISIT-2001, Washington, DC, 2001.
|
[40]
|
I. Siap and N. Kulhan, The structure of generalized quasi cyclic codes, Appl. Math. E-Notes, 5 (2005), 24-30.
|
[41]
|
J. Wang, R. Li, J. Lv, G. Guo and Y. Liu, Entanglement-assisted quantum error correction codes with length $n = q^2 + 1$, Quantum Inf. Process., 18 (2019), Paper No. 292, 21 pp.
doi: 10.1007/s11128-019-2409-0.
|
[42]
|
M. M. Wilde, M. H. Hsieh and Z. Babar, Entanglement-assisted quantum turbo codes, IEEE Trans. Inf. Theory, 60 (2014), 1203-1222.
doi: 10.1109/TIT.2013.2292052.
|