\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On cyclic and negacyclic codes with one-dimensional hulls and their applications

  • *Corresponding author: Steven T. Dougherty

    *Corresponding author: Steven T. Dougherty 
Abstract / Introduction Full Text(HTML) Figure(0) / Table(3) Related Papers Cited by
  • Linear codes over finite fields with small dimensional hulls have received much attention due to their applications in cryptology and quantum computing. In this paper, we study cyclic and negacyclic codes with one-dimensional hulls. We determine precisely when cyclic and negacyclic codes over finite fields with one-dimensional hulls exist. We also introduce one-dimensional linear complementary pairs of cyclic and negacyclic codes. As an application, we obtain numerous optimal or near optimal cyclic codes with one-dimensional hulls over different fields and, by using these codes, we present new entanglement-assisted quantum error-correcting codes (EAQECCs). In particular, some of these EAQEC codes are maximal distance separable (MDS). We also obtain one-dimensional linear complementary pairs of cyclic codes, which are either optimal or near optimal.

    Mathematics Subject Classification: Primary: 11T71, 94B15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Some New EAQECCs over $ {\mathbb{F}}_{2^3} $ from Cyclic Codes with one-dimensional Hulls

    Structure Generator polynomial of cyclic code Parameters of cyclic code Optimal/Near Optimal New EAQECCs EA-QMDS
    $ Q_1 $ $ x + 1 $ $ [6, 5, 2]_8 $ Optimal $ [[ 6, 4, 2;0]]_8 $ Yes
    $ Q_2 $ $ x + 1 $ $ [6, 5, 2]_8 $ Optimal $ [[ 6, 0, 6; 4]]_8 $ Yes
    $ Q_1 $ $ x + w $ $ [7, 6, 2]_8 $ Optimal $ [[ 7, 5, 2; 0]]_8 $ Yes
    $ Q_2 $ $ x + w $ $ [7, 6, 2]_8 $ Optimal $ [[ 7, 0, 7; 5]]_8 $ Yes
    $ Q_1 $ $ x^2 + w^3x + w $ $ [7, 5, 3]_8 $ Optimal $ [[ 7, 4, 3; 1]]_8 $ Yes
    $ Q_2 $ $ x^2 + w^3x + w $ $ [7, 5, 3]_8 $ Optimal $ [[ 7, 1, 6; 4]]_8 $ Yes
    $ Q_1 $ $ x^3 + x^2 + w^5x + w $ $ [7, 4, 4]_8 $ Optimal $ [[ 7, 3, 4; 2]]_8 $ Yes
    $ Q_2 $ $ x^3 + x^2 + w^5x + w $ $ [7, 4, 4]_8 $ Optimal $ [[ 7, 2, 5; 3]]_8 $ Yes
    $ Q_1 $ $ x + 1 $ $ [8, 7, 2]_8 $ Optimal $ [[ 8, 6, 2, 0]]_8 $ Yes
    $ Q_2 $ $ x + 1 $ $ [8, 7, 2]_8 $ Optimal $ [[ 8, 0, 8, 6]]_8 $ Yes
    $ Q_1 $ $ x + 1 $ $ [10, 9, 2]_8 $ Optimal $ [[ 10, 8, 2, 0]]_8 $ Yes
    $ Q_2 $ $ x + 1 $ $ [10, 9, 2]_8 $ Optimal $ [[ 10, 0, 10, 8]]_8 $ Yes
    $ Q_1 $ $ x + 1 $ $ [12, 11, 2]_8 $ Optimal $ [[ 12, 10, 2, 0]]_8 $ Yes
    $ Q_2 $ $ x + 1 $ $ [12, 11, 2]_8 $ Optimal $ [[ 12, 0, 12, 10]]_8 $ Yes
    $ Q_1 $ $ x^3 + x^2 + x + 1 $ $ [12, 9, 2]_8 $ Near Optimal $ [[ 12, 8, 2, 2]]_8 $ No
    $ Q_2 $ $ x^3 + x^2 + x + 1 $ $ [12, 9, 2]_8 $ Near Optimal $ [[ 12, 2, 6, 8]]_8 $ No
    $ Q_1 $ $ x + w^2 $ $ [14, 13, 2]_8 $ Optimal $ [[ 14, 12, 2, 0]]_8 $ Yes
    $ Q_2 $ $ x + w^2 $ $ [14, 13, 2]_8 $ Optimal $ [[ 14, 0, 14, 12]]_8 $ Yes
    $ Q_1 $ $ x^3 + w^6x^2 + x + w^6 $ $ [14, 11, 3]_8 $ Optimal $ [[ 14, 10, 3, 2]]_8 $ No
    $ Q_2 $ $ x^3 + w^6x^2 + x + w^6 $ $ [14, 11, 3]_8 $ Optimal $ [[ 14, 2, 7, 10]]_8 $ No
    $ Q_1 $ $ x + 1 $ $ [16, 15, 2]_8 $ Optimal $ [[ 16, 14, 2, 0]]_8 $ Yes
    $ Q_2 $ $ x + 1 $ $ [16, 15, 2]_8 $ Optimal $ [[ 16, 0, 16, 14]]_8 $ Yes
    $ Q_1 $ $ x + 1 $ $ [18, 17, 2]_8 $ Optimal $ [[ 18, 16, 2, 0]]_8 $ Yes
    $ Q_2 $ $ x + 1 $ $ [18, 17, 2]_8 $ Optimal $ [[ 18, 0, 18, 16]]_8 $ Yes
    $ Q_1 $ $ x^5 + x^4 + w^4x^3 + w^4x^2 + x + 1 $ $ [18, 13, 4]_8 $ Near Optimal $ [[ 18, 12, 4, 4]]_8 $ No
    $ Q_2 $ $ x^5 + x^4 + w^4x^3 + w^4x^2 + x + 1 $ $ [18, 13, 4]_8 $ Near Optimal $ [[ 18, 4, 8, 12]]_8 $ No
    $ Q_1 $ $ x + 1 $ $ [20, 19, 2]_8 $ Optimal $ [[ 20, 18, 2, 0]]_8 $ Yes
    $ Q_2 $ $ x + 1 $ $ [20, 19, 2]_8 $ Optimal $ [[ 20, 0, 20, 18]]_8 $ Yes
    $ Q_1 $ $ x^3 + x^2 + x + 1 $ $ [20, 17, 2]_8 $ Near Optimal $ [[ 20, 16, 2, 24]]_8 $ No
    $ Q_2 $ $ x^3 + x^2 + x + 1 $ $ [20, 17, 2]_8 $ Near Optimal $ [[ 20, 2, 10, 16]]_8 $ No
    $ Q_1 $ $ x^2 + wx + w^3 $ $ [21, 19, 2]_8 $ Optimal $ [[ 21, 18, 2, 1]]_8 $ No
    $ Q_2 $ $ x^2 + wx + w^3 $ $ [21, 19, 2]_8 $ Optimal $ [[ 21, 1, 18, 18]]_8 $ No
    $ Q_1 $ $ x^3 + w^6x^2 + w^6x + w^2 $ $ [21, 18, 3]_8 $ Optimal $ [[ 21, 17, 3, 2]]_8 $ No
    $ Q_2 $ $ x^3 + w^6x^2 + w^6x + w^2 $ $ [21, 18, 3]_8 $ Optimal $ [[ 21, 2, 14, 17]]_8 $ No
    $ Q_1 $ $ x^5 + w^2x^4 + w^2x^3 + w^3x^2 + w^4x + w^4 $ $ [21, 16, 4]_8 $ Optimal $ [[ 21, 15, 4, 4]]_8 $ No
    $ Q_2 $ $ x^5 + w^2x^4 + w^2x^3 + w^3x^2 + w^4x + w^4 $ $ [21, 16, 4]_8 $ Optimal $ [[ 21, 4, 12, 15]]_8 $ No
    $ Q_1 $ $ x + 1 $ $ [22, 21, 2]_8 $ Optimal $ [[ 22, 20, 2, 0]]_8 $ Yes
    $ Q_2 $ $ x + 1 $ $ [22, 21, 2]_8 $ Optimal $ [[ 22, 0, 22, 20]]_8 $ Yes
    $ Q_1 $ $ x + 1 $ $ [24, 23, 2]_8 $ Optimal $ [[ 24, 22, 2, 0]]_8 $ Yes
    $ Q_2 $ $ x + 1 $ $ [24, 23, 2]_8 $ Optimal $ [[ 24, 0, 24, 22]]_8 $ Yes
    $ Q_1 $ $ x + 1 $ $ [26, 25, 2]_8 $ Optimal $ [[ 26, 24, 2, 0]]_8 $ Yes
    $ Q_2 $ $ x + 1 $ $ [26, 25, 2]_8 $ Optimal $ [[ 26, 0, 26, 24]]_8 $ Yes
    $ Q_1 $ $ x + w $ $ [28, 27, 2]_8 $ Optimal $ [[ 28, 26, 2, 0]]_8 $ Yes
    $ Q_2 $ $ x + w $ $ [28, 27, 2]_8 $ Optimal $ [[ 28, 0, 28, 26]]_8 $ Yes
    $ Q_1 $ $ x^3 + x^2 + x + 1 $ $ [28, 25, 2]_8 $ Near Optimal $ [[ 28, 24, 2, 2]]_8 $ No
    $ Q_2 $ $ x^3 + x^2 + x + 1 $ $ [28, 25, 2]_8 $ Near Optimal $ [[ 28, 2, 14, 24]]_8 $ No
    $ Q_1 $ $ x + 1 $ $ [30, 29, 2]_8 $ Optimal $ [[ 30, 28, 2, 0]]_8 $ Yes
    $ Q_2 $ $ x + 1 $ $ [30, 29, 2]_8 $ Optimal $ [[ 30, 0, 30, 28]]_8 $ Yes
     | Show Table
    DownLoad: CSV

    Table 2.  Some New EAQECCs over $ {\mathbb{F}}_{3^2} $ from Cyclic Codes with one-dimensional Hulls

    Structure Generator polynomial of cyclic code Parameters of cyclic code Optimal/Near Optimal New EAQECCs EA-QMDS
    $ Q_1 $ $ x + w^2 $ $ [8, 7, 2]_9 $ Optimal $ [[ 8, 6, 2;0]]_9 $ Yes
    $ Q_2 $ $ x + w^2 $ $ [8, 7, 2]_9 $ Optimal $ [[ 8, 0, 8; 6]]_9 $ Yes
    $ Q_1 $ $ x^2 + w^2x + w $ $ [8, 6, 3]_9 $ Optimal $ [[ 8, 5, 3;1]]_9 $ Yes
    $ Q_2 $ $ x^2 + w^2x + w $ $ [8, 6, 3]_9 $ Optimal $ [[ 8, 1, 7; 5]]_9 $ Yes
    $ Q_1 $ $ x^4 + 2x^3 + 2x^2 + w^7x + w^6 $ $ [8, 4, 5]_9 $ Optimal $ [[ 8, 3, 5;3]]_9 $ Yes
    $ Q_1 $ $ x^3 + 2x + w^2 $ $ [8, 5, 3]_9 $ Near Optimal $ [[ 8, 4, 3; 2]]_9 $ Yes
    $ Q_2 $ $ x^3 + 2x + w^2 $ $ [8, 5, 3]_9 $ Near Optimal $ [[ 8, 2, 5; 4]]_9 $ Yes
    $ Q_1 $ $ x+2 $ $ [9, 8, 2]_9 $ Optimal $ [[ 9, 7, 2; 0]]_9 $ Yes
    $ Q_2 $ $ x+2 $ $ [9, 8, 2]_9 $ Optimal $ [[ 9, 0, 9; 7]]_9 $ Yes
    $ Q_1 $ $ x + w^2 $ $ [12, 11, 2]_9 $ Optimal $ [[ 12, 10, 2; 0]]_9 $ Yes
    $ Q_2 $ $ x + w^2 $ $ [12, 11, 2]_9 $ Optimal $ [[ 12, 0, 2; 10]]_9 $ No
    $ Q_1 $ $ x^2 + x + 1 $ $ [12, 10, 2]_9 $ Optimal $ [[ 12, 9, 2; 1]]_9 $ No
    $ Q_1 $ $ x^2 + x + 1 $ $ [15, 13, 2]_9 $ Optimal $ [[ 15, 12, 2; 1]]_9 $ No
    $ Q_1 $ $ x + 2 $ $ [15, 14, 2]_9 $ Optimal $ [[ 15, 13, 2; 0]]_9 $ Yes
    $ Q_2 $ $ x + 2 $ $ [15, 14, 2]_9 $ Optimal $ [[ 15, 0, 15;13]]_9 $ Yes
    $ Q_1 $ $ x + w^6 $ $ [16, 15, 2]_9 $ Optimal $ [[ 16, 14, 2; 0]]_9 $ Yes
    $ Q_2 $ $ x + w^6 $ $ [16, 15, 2]_9 $ Optimal $ [[16, 0, 16; 14]]_9 $ Yes
    $ Q_1 $ $ x^2 + w^6x + w^3 $ $ [16, 14, 2]_9 $ Optimal $ [[ 16, 13, 2;1]]_9 $ No
    $ Q_2 $ $ x^2 + w^6x + w^3 $ $ [16, 14, 2]_9 $ Optimal $ [[16, 1, 14;13]]_9 $ No
    $ Q_1 $ $ x^3 + 2x + w^2 $ $ [16, 13, 2]_9 $ Near Optimal $ [[ 16, 12, 2; 2 ]]_9 $ No
    $ Q_2 $ $ x^3 + 2x + w^2 $ $ [16, 13, 2]_9 $ Near Optimal $ [[ 16, 2, 10;12]]_9 $ No
    $ Q_1 $ $ x + 2 $ $ [18, 17, 2]_9 $ Optimal $ [[ 18, 16, 2;0]]_9 $ Yes
    $ Q_2 $ $ x + 2 $ $ [18, 17, 2]_9 $ Optimal $ [[18, 0, 18; 16]]_9 $ Yes
    $ Q_1 $ $ x^2 + w^3x + w^2 $ $ [20, 18, 2]_9 $ Optimal $ [[ 20, 17, 2;1]]_9 $ No
    $ Q_2 $ $ x^2 + w^3x + w^2 $ $ [20, 18, 2]_9 $ Optimal $ [[20, 1, 15;17]]_9 $ No
    $ Q_1 $ $ x + w^2 $ $ [20, 19, 2]_9 $ Optimal $ [[ 20, 18, 2; 0 ]]_9 $ Yes
    $ Q_2 $ $ x + w^2 $ $ [20, 19, 2]_9 $ Optimal $ [[20, 0, 20; 18]]_9 $ Yes
    $ Q_1 $ $ x^3 + w^7x^2 + w^6x + w^6 $ $ [20, 17, 3]_9 $ Optimal $ [[ 20, 16, 3; 2 ]]_9 $ No
    $ Q_2 $ $ x^3 + w^7x^2 + w^6x + w^6 $ $ [20, 17, 3]_9 $ Optimal $ [[20, 2, 16;16]]_9 $ No
    $ Q_1 $ $ x^4 + w^6x^3 + wx^2 + w^2 $ $ [20, 16, 4]_9 $ Optimal $ [[ 20, 15, 4; 3 ]]_9 $ No
    $ Q_2 $ $ x^4 + w^6x^3 + wx^2 + w^2 $ $ [20, 16, 4]_9 $ Optimal $ [[20, 3, 14; 15]]_9 $ No
    $ Q_1 $ $ x^5 + w^5x^4 + wx^3 + w^3x^2 + w^6x + w^6 $ $ [20, 15, 4]_9 $ Near Optimal $ [[ 20, 14, 4; 4 ]]_9 $ No
    $ Q_2 $ $ x^5 + w^5x^4 + wx^3 + w^3x^2 + w^6x + w^6 $ $ [20, 15, 4]_9 $ Near Optimal $ [[20, 4, 10; 14]]_9 $ No
    $ Q_1 $ $ x + 2 $ $ [21, 20, 2]_9 $ Optimal $ [[ 21, 19, 2; 0 ]]_9 $ Yes
    $ Q_2 $ $ x + 2 $ $ [21, 20, 2]_9 $ Optimal $ [[21, 0, 21;19]]_9 $ Yes
    $ Q_1 $ $ x^2 + x + 1 $ $ [21, 19, 2]_9 $ Optimal $ [[ 21, 18, 2; 10 ]]_9 $ No
    $ Q_2 $ $ x^2 + x + 1 $ $ [21, 19, 2]_9 $ Optimal $ [[21, 1, 14;18]]_9 $ No
    $ Q_1 $ $ x + w $ $ [24, 23, 2]_9 $ Optimal $ [[ 24, 22, 2; 0 ]]_9 $ Yes
    $ Q_2 $ $ x + w $ $ [24, 23, 2]_9 $ Optimal $ [[24, 0, 24; 22]]_9 $ Yes
    $ Q_1 $ $ x^2 + x + 1 $ $ [24, 22, 2]_9 $ Optimal $ [[ 24, 21, 2; 1 ]]_9 $ No
    $ Q_2 $ $ x^2 + x + 1 $ $ [24, 22, 2]_9 $ Optimal $ [[24, 1, 16; 21]]_9 $ No
    $ Q_1 $ $ x^4 + wx^3 + 2x + w^5 $ $ [24, 20, 3]_9 $ Near Optimal $ [[ 24, 19, 3; 3 ]]_9 $ No
    $ Q_2 $ $ x^4 + wx^3 + 2x + w^5 $ $ [24, 20, 3]_9 $ Near Optimal $ [[24, 3, 8; 19]]_9 $ No
    $ Q_1 $ $ x + 2 $ $ [27, 26, 2]_9 $ Optimal $ [[ 27, 25, 2; 0 ]]_9 $ Yes
    $ Q_2 $ $ x + 25 $ $ [27, 26, 2]_9 $ Optimal $ [[27, 0, 27;25]]_9 $ Yes
    $ Q_1 $ $ x + w^2 $ $ [28, 27, 2]_9 $ Optimal $ [[ 28, 26, 2; 0 ]]_9 $ Yes
    $ Q_2 $ $ x + w^2 $ $ [28, 27, 2]_9 $ Optimal $ [[28, 0, 28; 26]]_9 $ Yes
    $ Q_1 $ $ x^2 + w^7x + w^2 $ $ [28, 26, 2]_9 $ Optimal $ [[ 28, 25, 2; 1 ]]_9 $ No
    $ Q_2 $ $ x^2 + w^7x + w^2 $ $ [28, 26, 2]_9 $ Optimal $ [[28, 1, 21; 25]]_9 $ No
    $ Q_1 $ $ x^3 + w^2*x^2 + 2*x + w^6 $ $ [28, 25, 2]_9 $ Near Optimal $ [[28, 24, 2; 2 ]]_9 $ No
    $ Q_2 $ $ x^3 + w^2*x^2 + 2*x + w^6 $ $ [28, 25, 2]_9 $ Near Optimal $ [[28, 2, 14;24]]_9 $ No
    $ Q_1 $ $ x + 1 $ $ [30, 29, 2]_9 $ Optimal $ [[30, 28, 2; 0 ]]_9 $ Yes
    $ Q_2 $ $ x + 1 $ $ [30, 29, 2]_9 $ Optimal $ [[30, 0, 30; 28]]_9 $ Yes
    $ Q_1 $ $ x^2 + 2*x + 1 $ $ [30, 28, 2]_9 $ Optimal $ [[30, 27, 2; 1 ]]_9 $ No
    $ Q_2 $ $ x^2 + 2*x + 1 $ $ [30, 28, 2]_9 $ Optimal $ [[30, 1, 20; 27]]_9 $ No
     | Show Table
    DownLoad: CSV

    Table 3.  one-dimensional linear complementary pairs of cyclic codes $ (\mathcal{C}, \mathcal{D}) $ over $ {\mathbb{F}}_{p^e} $

    Alphabet Parameters of $ \mathcal{C} $ Optimal/ Near Optimal Parameters of $ \mathcal{D} $ Optimal/ Near Optimal
    $ {\mathbb{F}}_{2} $ $ [12, 3, 6] $ Optimal $ [12, 9, 2] $ Optimal
    $ {\mathbb{F}}_{2} $ $ [14, 7, 4] $ Optimal $ [14, 7, 4] $ Optimal
    $ {\mathbb{F}}_{2} $ $ [20, 17, 2] $ Optimal $ [20, 3, 10] $ Near Optimal
    $ {\mathbb{F}}_{3} $ $ [6, 2, 4] $ Optimal $ [6, 4, 2] $ Optimal
    $ {\mathbb{F}}_{3} $ $ [6, 3, 2] $ Near Optimal $ [6, 3, 3] $ Optimal
    $ {\mathbb{F}}_{3} $ $ [8, 5, 3] $ Optimal $ [8, 3, 5] $ Optimal
    $ {\mathbb{F}}_{3} $ $ [12, 2, 8] $ Near Optimal $ [12, 10, 2] $ Optimal
    $ {\mathbb{F}}_{3} $ $ [16, 7, 5] $ Near Optimal $ [16, 9, 4] $ Near Optimal
    $ {\mathbb{F}}_{5} $ $ [4, 2, 3] $ Optimal $ [4, 2, 3] $ Optimal
    $ {\mathbb{F}}_{5} $ $ [8, 5, 2] $ Near Optimal $ [8, 3, 4] $ Near Optimal
    $ {\mathbb{F}}_{5} $ $ [8, 4, 4] $ Optimal $ [8, 4, 3] $ Near Optimal
    $ {\mathbb{F}}_{5} $ $ [8, 2, 6] $ Optimal $ [8, 6, 2] $ Optimal
    $ {\mathbb{F}}_{5} $ $ [8, 4, 4] $ Optimal $ [8, 4, 4] $ Optimal
    $ {\mathbb{F}}_{7} $ $ [6, 3, 3] $ Near Optimal $ [6, 3, 3] $ Near Optimal
    $ {\mathbb{F}}_{7} $ $ [6, 3, 4] $ Optimal $ [6, 3, 3] $ Near Optimal
    $ {\mathbb{F}}_{7} $ $ [6, 2, 4] $ Near Optimal $ [6, 4, 2] $ Near Optimal
    $ {\mathbb{F}}_{7} $ $ [6, 2, 5] $ Optimal $ [6, 4, 2] $ Near Optimal
    $ {\mathbb{F}}_{7} $ $ [8, 3, 6] $ Optimal $ [8, 5, 4] $ Optimal
    $ {\mathbb{F}}_{9} $ $ [4, 2, 3] $ Optimal $ [4, 2, 3] $ Optimal
    $ {\mathbb{F}}_{9} $ $ [4, 2, 2] $ Near Optimal $ [4, 2, 3] $ Optimal
    $ {\mathbb{F}}_{9} $ $ [6, 2, 4] $ Near Optimal $ [6, 4, 2] $ Near Optimal
    $ {\mathbb{F}}_{9} $ $ [8, 4, 5] $ Optimal $ [8, 4, 4] $ Near Optimal
    $ {\mathbb{F}}_{9} $ $ [8, 3, 5] $ Near Optimal $ [8, 5, 4] $ Optimal
    $ {\mathbb{F}}_{9} $ $ [8, 3, 6] $ Optimal $ [8, 5, 3] $ Near Optimal
    $ {\mathbb{F}}_{9} $ $ [8, 6, 3] $ Optimal $ [8, 2, 6] $ Near Optimal
    $ {\mathbb{F}}_{9} $ $ [8, 2, 7] $ Optimal $ [8, 6, 2] $ Near Optimal
     | Show Table
    DownLoad: CSV
  • [1] E. F. AssmusJr and J. D. Key, Affine and projective planes, Discrete Math., 83 (1990), 161-187.  doi: 10.1016/0012-365X(90)90003-Z.
    [2] N. AydinI. Siap and D. K. Ray-Chaudhuri, The structure of 1-generator quasi-twisted codes and new linear codes, Des. Codes Cryptog., 24 (2001), 313-326.  doi: 10.1023/A:1011283523000.
    [3] G. Bowen, Entanglement required in achieving entanglement-assisted channel capacities, Phys. Rev. A, 66 (2002), 052313. 
    [4] T. A. BrunI. Devetak and M. H. Hsieh, Catalytic quantum error correction, IEEE Trans. Inf. Theory, 60 (2014), 3073-3089.  doi: 10.1109/TIT.2014.2313559.
    [5] T. A. BrunI. Devetak and M. H. Hsieh, Correcting quantum errors with entanglement, Science, 314 (2006), 436-439.  doi: 10.1126/science.1131563.
    [6] A. R. CalderbankE. M. RainsP. W. Shor and N. J. A. Sloane, Quantum error correction via GF(4), IEEE Trans. Inf. Theory, 44 (1998), 1369-1387.  doi: 10.1109/18.681315.
    [7] P.-L. CayrelC. Chabot and A. Necer, Quasi-cyclic codes as codes over rings of matrices, Finite Fields Appl., 16 (2010), 100-115.  doi: 10.1016/j.ffa.2010.01.001.
    [8] C. ClaudeC. GüneriF. ÖzbudakB. Özkaya and S. Patrick, On linear complementary pairs of codes, IEEE Trans. Inf. Theory, 64 (2018), 6583-6589.  doi: 10.1109/TIT.2018.2796125.
    [9] S. T. Dougherty, Nets and their codes, Des. Codes and Cryptog., 3 (1993), 315-331.  doi: 10.1007/BF01418529.
    [10] S. T. Dougherty, A coding-theoretic solution to the 36 officer problem, Des. Codes and Cryptog., 4 (1994), 123-128.  doi: 10.1007/BF01578866.
    [11] S. T. Dougherty, Algebraic Coding Theory over Finite Commutative Rings, Springer-Verlag, Springer-Briefs, 2017. doi: 10.1007/978-3-319-59806-2.
    [12] S. T. DoughertyJ.-L. KimB. OzkayaL. Sok and P. Sole, The combinatorics of LCD codes: Linear programming bound and orthogonal matrices, Int. J. Inf. Coding Theory, 4 (2017), 116-128.  doi: 10.1504/IJICOT.2017.083827.
    [13] S. T. Dougherty, S. Sahinkaya and D. Ustun, On dihedral codes with one-dimensional hulls and one-dimensional linear complementary pair of dihedral codes, in submission.
    [14] Y. Edel, Table of quantum twisted codes, Electronic address: https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html.
    [15] K. Feng and Z. Ma, A finite Gilbert-Varshamov bound for pure stabilizer quantum codes, IEEE Trans. Inf. Theory, 50 (2004), 3323-3325.  doi: 10.1109/TIT.2004.838088.
    [16] C. Galindo, F. Hernando, R. Matsumoto and D. Ruano, Entanglement-assisted quantum error-correcting codes over arbitrary finite fields, Quant. Inf. Process., 18 (2019), Paper No. 116, 18 pp. doi: 10.1007/s11128-019-2234-5.
    [17] L. GalvezJ.-L. KimN. LeeY. G. Roe and B.-S. Won, Some bounds on binary LCD codes, Cryptogr. Commun., 10 (2018), 719-728.  doi: 10.1007/s12095-017-0258-1.
    [18] K. GuendaS. Jitman and T. A. Gulliver, Constructions of good entanglement assisted quantum error correcting codes, Des. Codes Cryptog., 86 (2018), 121-136.  doi: 10.1007/s10623-017-0330-z.
    [19] C.-Y. Lai and A. Ashikhmin, Linear programming bounds for entanglement-assisted quantum error correcting codes by split weight enumerators, IEEE Trans. Inf. Theory., 64 (2018), 622-639.  doi: 10.1109/TIT.2017.2711601.
    [20] C.-Y. Lai and T. A. Brun, Entanglement-assisted quantum error correcting codes with imperfect ebits, Phys. Rev. A, 86 (2012), 032319. 
    [21] C. Y. Lai and T. A. Brun, Entanglement increases the error-correcting ability of quantum error-correcting codes, Phys. Rev. A, 88 (2013), 012320. 
    [22] C. Y. LaiT. A. Brun and M. M. Wilde, Duality in entanglement-assisted quantum error correction, IEEE Trans. Inf. Theory, 59 (2013), 4020-4024.  doi: 10.1109/TIT.2013.2246274.
    [23] K. Lally and P. Fitzpatrick, Algebraic structure of quasicyclic codes, Discrete Applied Mathematics, 111 (2001), 157-175.  doi: 10.1016/S0166-218X(00)00350-4.
    [24] J. S. Leon, Computing automorphism groups of error-correcting codes, IEEE Trans. Inform. Theory, 28 (1982), 496-511.  doi: 10.1109/TIT.1982.1056498.
    [25] J. S. Leon, Permutation group algorithms based on partition. I. Theory and algorithms, J. Symbolic Comput., 12 (1991), 533-583.  doi: 10.1016/S0747-7171(08)80103-4.
    [26] C. Li and P. Zeng, Constructions of linear codes with one-dimensional hulls, IEEE Trans. Inf. Theory, 65 (2019), 1668-1676.  doi: 10.1109/TIT.2018.2863693.
    [27] R. Lidl and  H. NiederreiterFinite Fields, Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997. 
    [28] S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes. I. Finite fields, IEEE Trans. Inf. Theory, 47 (2001), 2751-2760.  doi: 10.1109/18.959257.
    [29] X. LiuL. Yu and P. Hu, New entanglement-assisted quantum codes from $k$-Galois dual codes, Finite Fields Appl., 55 (2019), 21-32.  doi: 10.1016/j.ffa.2018.09.001.
    [30] L. LuR. LiL. Guo and Q. Fu, Maximal entanglement-assisted quantum codes constructed from linear codes, Quantum Inf. Process., 14 (2014), 165-182.  doi: 10.1007/s11128-014-0830-y.
    [31] L. LuR. LiW. MaY. MaY. Liu and H. Cao, Entanglement-assisted quantum MDS codes from constacyclic codes with large minimum distance, Finite Fields Appl., 53 (2018), 309-325.  doi: 10.1016/j.ffa.2018.06.012.
    [32] L. Lu, X. Zhan, S. Yang and H. Cao, Optimal quaternary hermitian LCD codes, arXiv: 2010.10166.
    [33] J. L. Massey, Linear codes with complementary duals, Discrete Math., 106/107 (1992), 337-342.  doi: 10.1016/0012-365X(92)90563-U.
    [34] B. PangS. Zhu and X. Kai, Some new bounds on LCD codes over finite fields, Cryptogr. Commun., 12 (2020), 743-755.  doi: 10.1007/s12095-019-00417-y.
    [35] E. Prange, Cyclic Error-Correcting Codes in Two Symbols, Air Force Cambridge Research Center, AFCRC-TN-57-103, 1957.
    [36] J. Qian and L. Zhang, On MDS linear complementary dual codes and entanglement-assisted quantum codes, Des. Codes Cryptog., 86 (2018), 1565-1572.  doi: 10.1007/s10623-017-0413-x.
    [37] L. Q. QianX. W. Cao and S. Mesnager, Linear codes with one-dimensional hulls associated with Gaussian sums, Cryptogr. Commun., 13 (2021), 225-243.  doi: 10.1007/s12095-020-00462-y.
    [38] N. Sendrier, Finding the permutation between equivalent codes: The support splitting algorithm, IEEE Trans. Inf. Theory, 46 (2000), 1193-1203.  doi: 10.1109/18.850662.
    [39] N. Sendrier and G. Skersys, On the Computation of the Automorphism Group of a Linear Code, Proceedings of IEEE ISIT-2001, Washington, DC, 2001.
    [40] I. Siap and N. Kulhan, The structure of generalized quasi cyclic codes, Appl. Math. E-Notes, 5 (2005), 24-30. 
    [41] J. Wang, R. Li, J. Lv, G. Guo and Y. Liu, Entanglement-assisted quantum error correction codes with length $n = q^2 + 1$, Quantum Inf. Process., 18 (2019), Paper No. 292, 21 pp. doi: 10.1007/s11128-019-2409-0.
    [42] M. M. WildeM. H. Hsieh and Z. Babar, Entanglement-assisted quantum turbo codes, IEEE Trans. Inf. Theory, 60 (2014), 1203-1222.  doi: 10.1109/TIT.2013.2292052.
  • 加载中

Tables(3)

SHARE

Article Metrics

HTML views(3386) PDF downloads(1185) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return