| Level Decomposition | Hasse Diagram |
| $ H_1 =\{1, 2\} $ and $ H_2 =\{3\} $ | ![]() |
| $ H_1 =\{1\} $ and $ H_2 =\{2, 3\} $ | ![]() |
| $ H_1 =\{1\} $, $ H_2 =\{2\} $ and $ H_3 =\{3\} $ | ![]() |
| $ H_1 = \{1, 2, 3\} $ | ![]() |
Given a ground set $ \mathcal{U} $ and a collection $ \mathcal{C} $ of subsets of $ \mathcal{U} $, we investigate the covering number, which is the cardinality of the smallest sub-collection $ \mathcal{S} $ whose union covers the universe $ \mathcal{U} $. This paper embraces three covering-related problems in hierarchical poset spaces: the classic, the short covering and normal codes. In the first two problems, the classical and the short-covering ones, the covering numbers are studied for collections of $ R $-balls and $ R $-strips, respectively. We prove that determining the covering number in hierarchical spaces depends only on their correspondents in the Hamming space. It allows us to express the covering number in hierarchical spaces. Later on, we characterize all $ \mathcal{H} $-normal codes in binary hierarchical spaces, that are a distinctive family of $ R $-coverings.
| Citation: |
Table 1.
The Hasse diagrams of hierarchical posets over
| Level Decomposition | Hasse Diagram |
| $ H_1 =\{1, 2\} $ and $ H_2 =\{3\} $ | ![]() |
| $ H_1 =\{1\} $ and $ H_2 =\{2, 3\} $ | ![]() |
| $ H_1 =\{1\} $, $ H_2 =\{2\} $ and $ H_3 =\{3\} $ | ![]() |
| $ H_1 = \{1, 2, 3\} $ | ![]() |
| [1] |
R. A. Brualdi, J. S. Graves and K. M. Lawrence, Codes with a poset metric, Discrete Math., 147 (1995), 57-72.
doi: 10.1016/0012-365X(94)00228-B.
|
| [2] |
A. G. Castoldi and E. L. Monte Carmelo, The covering problem in Rosenbloom-Tsfasman spaces, Electron. J. Combin., 22 (2015), Paper 3.30, 18 pp.
doi: 10.37236/4974.
|
| [3] |
A. G. Castoldi, E. L. Monte Carmelo, L. Moura, D. Panario and B. Stevens, Bounds on covering codes in RT-spaces using ordered covering arrays, in Algebraic Informatics, Springer, 2019,100-111.
doi: 10.1007/978-3-030-21363-3_9.
|
| [4] |
A. G. Castoldi, E. L. do Monte Carmelo and R. da Silva, Partial sums of binomials, intersecting numbers, and the excess bound in Rosenbloom–Tsfasman space, Comput. Appl. Math., 38 (2019), Paper No. 55, 15 pp.
doi: 10.1007/s40314-019-0828-2.
|
| [5] |
G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering Codes, Elsevier, Netherlands, 1997.
|
| [6] |
G. Cohen, A. Lobstein and N. Sloane, Further results on the covering radius of codes, IEEE Trans. Inform. Theory, 32 (1986), 680-694.
doi: 10.1109/TIT.1986.1057227.
|
| [7] |
T. Etzion, G. Greenberg and I. S. Honkala, Normal and abnormal codes, IEEE Trans. Inform. Theory, 39 (1993), 1453-1456.
doi: 10.1109/18.243469.
|
| [8] |
L. V. Felix and M. Firer, Canonical-systematic form for codes in hierarchical poset metrics, Adv. Math. Commun., 6 (2012), 315-328.
doi: 10.3934/amc.2012.6.315.
|
| [9] |
M. Firer, M. M. S. Alves, J. A. Pinheiro and L. Panek, Poset Codes: Partial Orders, Metrics and Coding Theory, Springer International Publishing, 2018.
doi: 10.1007/978-3-319-93821-9.
|
| [10] |
M. Frances and A. Litman, On covering problems of codes, Theory Comput. Syst., 30 (1997), 113-119.
doi: 10.1007/BF02679443.
|
| [11] |
R. Graham and N. Sloane, On the covering radius of codes, IEEE Trans. Inform. Theory, 31 (1985), 385-401.
doi: 10.1109/TIT.1985.1057039.
|
| [12] |
H. K. Kim and D. Y. Oh, A classification of posets admitting the MacWilliams identity, IEEE Trans. Inform. Theory, 51 (2005), 1424-1431.
doi: 10.1109/TIT.2005.844067.
|
| [13] |
R. A. Machado, J. A. Pinheiro and M. Firer, Characterization of metrics induced by hierarchical posets, IEEE Trans. Inform. Theory, 63 (2017), 3630-3640.
doi: 10.1109/TIT.2017.2691763.
|
| [14] |
I. N. Nakaoka, E. L. Monte Carmelo and O. J. N. T. N. dos Santos, Sharp covering of a module by cyclic submodules, Linear Algebra Appl., 458 (2014), 387-402.
doi: 10.1016/j.laa.2014.06.019.
|
| [15] |
I. N. Nakaoka and O. J. N. T. N. dos Santos, A covering problem over finite rings, Appl. Math. Lett., 23 (2010), 322-326.
doi: 10.1016/j.aml.2009.09.022.
|
| [16] |
O. J. N. T. N. dos Santos and E. L. Monte Carmelo, Invariant sets under linear operator and covering codes over modules, Linear Algebra Appl., 444 (2014), 42-52.
doi: 10.1016/j.laa.2013.11.034.
|
| [17] |
O. J. N. T. N. dos Santos and I. N. Nakaoka, Cyclic covering of a module over an artinian ring, Internat. J. Algebra Comput., 26 (2016), 763-773.
doi: 10.1142/S0218196716500338.
|
| [18] |
R. S. Selvaraj and M. Venkatrajam, Normality of binary codes in Rosenbloom-Tsfasman Metric, 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2013, 1370-1373.
doi: 10.1109/ICACCI.2013.6637378.
|
| [19] |
B. Yildiz, I. Siap, T. Bilgin and G. Yesilot, The covering problem for finite rings with respect to the RT-metric, Appl. Math. Lett., 23 (2010), 988-992.
doi: 10.1016/j.aml.2010.04.023.
|