[1]
|
E. F. Assmus and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics,
Vol. 103, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9781316529836.
|
[2]
|
I. G. Bouyukliev, Classification of Griesmer codes and dual transform, Discrete Mathematics, 309 (2009), 4049-4068.
doi: 10.1016/j.disc.2008.12.002.
|
[3]
|
S. Bouyuklieva and I. Bouyukliev, Dual transform through characteristic vectors, Proceedings of the International Workshop OCRT, Sofia, Bulgaria, 2017, 43-48.
|
[4]
|
I. Bouyukliev, S. Bouyuklieva and S. Dodunekov, On binary self-complementary $[120, 9, 56]$ codes having an automorphism of order 3 and associated SDP designs, Probl. Inf. Transm., 43 (2007), 89-96.
doi: 10.1134/S0032946007010020.
|
[5]
|
I. Bouyukliev, S. Bouyuklieva and S. Kurz, Computer classification of linear codes, IEEE Trans. Inform. Theory, 67 (2021), 7807-7814.
doi: 10.1109/TIT.2021.3114280.
|
[6]
|
I. Bouyukliev, S. Bouyuklieva, T. Maruta and P. Piperkov, Characteristic vector and weight distribution of a linear code, Cryptogr. Commun., 13 (2021), 263-282.
doi: 10.1007/s12095-020-00458-8.
|
[7]
|
I. Bouyukliev, S. Bouyuklieva and M. Pashinska-Gadzheva, On some families of codes related to the even linear codes meeting the Grey-Rankin bound, Mathematics, 10 (2022), 4588.
doi: 10.3390/math10234588.
|
[8]
|
A. E. Brouwer, P. J. Cameron, W. H. Haemers and D. A. Preece, Self-dual, not self-polar, Discrete Mathematics, 306 (2006), 3051-3053.
doi: 10.1016/j.disc.2004.11.027.
|
[9]
|
A. E. Brouwer and M. van Eupen, The correspondence between projective codes and 2-weight codes, Des., Codes and Crypt., 11 (1997), 262-266.
doi: 10.1023/A:1008294128110.
|
[10]
|
R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc., 18 (1986), 97-122.
doi: 10.1112/blms/18.2.97.
|
[11]
|
C. Carlet, Boolean functions for cryptography and error correcting codes, Boolean Models
and Methods in Mathematics, Computer Science, and Engineering, Cambridge University
Press, Cambridge, 2010,257-397.
doi: 10.1017/CBO9780511780448.011.
|
[12]
|
C. Carlet, P. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems, Designs, Codes and Cryptography, 15 (1998), 125-156.
doi: 10.1023/A:1008344232130.
|
[13]
|
C. Carlet, L. E. Danielsen, M. G. Parker and P. Solé, Self-dual bent functions, Int. J. Inform. Coding Theory, 1 (2010), 384-399.
doi: 10.1504/IJICOT.2010.032864.
|
[14]
|
P. Delsarte, Weights of linear codes and strongly regular normed spaces, Discrete Mathematics, 3 (1972), 47-64.
doi: 10.1016/0012-365X(72)90024-6.
|
[15]
|
C. Ding, Linear codes from some 2-designs, IEEE Trans. Inform. Theory, 61 (2015), 3265-3275.
doi: 10.1109/TIT.2015.2420118.
|
[16]
|
C. Ding, A construction of binary linear codes from Boolean functions, Discrete Mathematics, 339 (2016), 2288-2303.
doi: 10.1016/j.disc.2016.03.029.
|
[17]
|
S. Dodunekov and J. Simonis, Codes and projective multisets, Electron. J. Combin., 5 (1998), Research Paper 37, 23 pp.
doi: 10.37236/1375.
|
[18]
|
Y. Edel and A. Pott, On the equivalence of nonlinear functions, Enhancing Cryptographic
Primitives with Techniques from Error Correcting Codes, IOS Press, 2009, 87-103.
|
[19]
|
R. Hill, Caps and codes, Discrete Mathematics, 22 (1978), 111-137.
doi: 10.1016/0012-365X(78)90120-6.
|
[20]
|
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge Univ. Press, 2003.
doi: 10.1017/CBO9780511807077.
|
[21]
|
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier, North-Holland, Amsterdam, 1977.
|
[22]
|
S. Mesnager, Bent Functions: Fundamentals and Results, Springer, 2016.
doi: 10.1007/978-3-319-32595-8.
|