\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

PMNS for cryptography: A guided tour

Abstract / Introduction Full Text(HTML) Figure(0) / Table(9) Related Papers Cited by
  • The Polynomial Modular Number System (PMNS) offers an alternative to the conventional binary multi-precision representation system for large integers. Its effectiveness has been demonstrated for various cryptosystems using prime field arithmetic [2,4,6], with prime sizes ranging from 256 to 736 bits. However, as the size of $ p $ increases, the relative performance of PMNS compared to standard arithmetic diminishes. Furthermore, the generation process of a PMNS has a worst-case complexity of $ {\mathcal O}(2^n) $, where $ n $ denotes the number of symbols used to represent an integer modulo $ p $ in this representation system. In this paper, we present several alternatives and improvements to the construction and implementation processes of PMNS, which are tailored to the size of $ p $.

    Mathematics Subject Classification: Primary: 11T06, 11T71; Secondary: 94A60, 68W99.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Number of cycles to compute a PMNS modular multiplication, gcc 12.1.0, i9-11900KF

    Alg./size of $ p $ 256 512 1024
    Montgomery 121 432 1709
    This work 122 443 1728
     | Show Table
    DownLoad: CSV

    Table 2.  Optimal polynomial degrees vs practical ones used in implementation per size of prime considered

    size of $ p $ 256 512 1024 2048 4096 8192
    $ n_{\text{opt}64} $ 5 9 17 33 65 129
    $ n_{64} $ 5 9 19 40 83 187
    $ n_{\text{opt}128} $ 3 5 9 17 33 65
    $ n_{128} $ 3 5 9 18 36 72
     | Show Table
    DownLoad: CSV

    Table 3.  Comparative table of performances for Red-64 and Red-128 in number of processor cycles for one modular multiplication on Intel processor i9-11900KF with gcc 12.1.0

    size of $ p $ 256 512 1024 2048 4096 8192
    Red-64 122 443 1709 7690 33471 169070
    Red-128 245 720 2367 10920 39446 156310
     | Show Table
    DownLoad: CSV

    Table 4.  Number of cycles to compute a modular multiplication using GnuMP and PMNS on Intel processor i9-11900KF with gcc 12.1.0

    Size 1024 2048 4096 8192
    GnuMP
    $ n $ 16 32 64 128
    Low level 1715 5501 16897 53042
    Classical Mont. 1534 4653 14522 44587
    Mont. CIOS 1187 4661 16793 61478
    This work
    $ n $ 19 40 84 187
    Red-64 1709 7690 33471 169070
    $ n $ - - - 72
    Red-128 - - - 156310
     | Show Table
    DownLoad: CSV

    Table 5.  Number of cycles to compute a modular multiplication between two 8192-bit integers using GnuMP and PPMNS (for any $ E(X) $) on Intel processor i9-11900KF with gcc 12.1.0

    5-core 6-core 8-core Low level Classical Mont. Mont. CIOS
    $ n $=187 $ n $=128
    51979 46224 40778 53042 44567 61478
     | Show Table
    DownLoad: CSV

    Table 6.  Number of cycles to compute a modular multiplication between two 8192-bit integers using GnuMP and PPMNS (for $ E(X) = X^{189}-2 $) on an Intel processor i9-11900KF with gcc 12.1.0

    6-core Low level Classical Mont. Mont. CIOS
    $ n $=189 $ n $=128
    42510 53042 44567 61478
     | Show Table
    DownLoad: CSV

    Table 7.  Number of cycles to compute a modular multiplication for 2048-bit and 4096-bit integers using GnuMP, PMNS and PPMNS on an Intel processor i9-11900KF with gcc 12.1.0

    Method/Size 2048 4096
    $ n $ 32 64
    Low level 5501 16897
    Classical Mont. 4653 14524
    Mont. CIOS 4607 16793
    $ n $ 40 84
    Red-64 7491 (1-core) 10165 (2-core) 36195 (1-core) 17756 (6-core)
    Red-128 10920 (1-core) 15314 (2-core) 39446 (1-core) 25797 (4-core)
     | Show Table
    DownLoad: CSV

    Table 8.  Number of cycles to compute a modular multiplication for 2048, 4096 and 8192-bit integers using Toeplitz form vs random matrix form on Intel processor i9-11900KF with gcc 12.1.0

    Size 2048 4096 8192
    8 cores
    Toeplitz Montgomery-like 14421 18193 37026
    This work 14529 22782 40778
     | Show Table
    DownLoad: CSV

    Table 9.  Number of cycles to compute a modular multiplication for 1024, 1664 and 2048-bit integers using Toeplitz form vs GnuMP on Intel processor i9-11900KF with gcc 12.1.0

    Size 1024 1664 2048
    Low level 1715 4039 5501
    Classical Mont. 1539 3466 4653
    Montgomery CIOS 1187 3153 4607
    Toeplitz (this work) 1449 3454 5489
     | Show Table
    DownLoad: CSV
  • [1] J.-C. Bajard, L. Imbert and T. Plantard, Modular number systems: Beyond the mersenne family, In Selected Areas in Cryptography, 11th International Workshop, SAC 2004, Waterloo, Canada, 2004,159-169. doi: 10.1007/978-3-540-30564-4_11.
    [2] C. Bouvier and L. Imbert, An alternative approach for sidh arithmetic, In Juan A. Garay, editor, Public-Key Cryptography – PKC 2021, 27-44, Cham, 2021. Springer International Publishing. doi: 10.1007/978-3-030-75245-3_2.
    [3] R. P. Brent and P. Zimmermann, Modern Computer Arithmetic, volume 18 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, 2010.
    [4] T. Coladon, P. Elbaz-Vincent and C. Hugounenq, MPHELL: A fast and robust library with unified and versatile arithmetics for elliptic curves cryptography, In ARITH 2021, Transactions on Emerging Topics in Computing, Torino, Italy, 2021. doi: 10.1109/ARITH51176.2021.00026.
    [5] L.-S. DidierF. Y. Dosso and P. Véron, Efficient modular operations using the adapted modular number system, Journal of Cryptographic Engineering, 10 (2020), 111-133.  doi: 10.1007/s13389-019-00221-7.
    [6] F. Y. DossoJ.-M. Robert and P. Véron, PMNS for efficient arithmetic and small memory cost, IEEE Transactions on Emerging Topics in Computing, 10 (2022), 1263-1277.  doi: 10.1109/ARITH54963.2022.00023.
    [7] H. Fan and M. A. Hasan, Alternative to the karatsuba algorithm for software implementation of GF(2n) multiplication, IET Information Security, 3 (2009), 60-65.  doi: 10.1049/iet-ifs.2007.0132.
    [8] M. A. Hasan and C. Nègre, Multiway splitting method for toeplitz matrix vector product, IEEE Transactions on Computers, 62 (2013), 1467-1471.  doi: 10.1109/TC.2012.95.
    [9] Ç. K. KoçT. Acar and B. S. Kaliski, Analyzing and comparing montgomery multiplication algorithms, IEEE Micro, 16 (1996), 26-33.  doi: 10.1109/40.502403.
    [10] P. L. Montgomery, Modular multiplication without trial division, Mathematics of Computation, 44 (1985), 519-521.  doi: 10.1090/S0025-5718-1985-0777282-X.
    [11] C. Negre and T. Plantard, Efficient modular arithmetic in adapted modular number system using lagrange representation, In Information Security and Privacy, 13th Australasian Conference, ACISP 2008, Wollongong, Australia, (2008), 463-477. doi: 10.1007/978-3-540-70500-0_34.
    [12] P. van Emde Boas, Another np-complete problem and the complexity of computing short vectors in a lattice, Technical report, University of Amsterdam, Department of Mathematics, Netherlands, 1981.
  • 加载中

Tables(9)

SHARE

Article Metrics

HTML views(1587) PDF downloads(231) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return