\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Construction of extremal $ \mathbb{Z}_{4} $-codes using a neighborhood search algorithm

  • *Corresponding author: Sanja Rukavina

    *Corresponding author: Sanja Rukavina
Abstract / Introduction Full Text(HTML) Figure(1) / Table(10) Related Papers Cited by
  • In this paper, we present a method for constructing extremal $ \mathbb{Z}_{4} $-codes based on random neighborhood search. This method is used to find new extremal Type Ⅰ and Type Ⅱ $ \mathbb{Z}_{4} $-codes of lengths 32 and 40. For the length 32, at least 182 new Type Ⅱ extremal $ \mathbb{Z}_{4} $-codes of types $ 4^{k}2^{32-2k} $, $ k\in\left\{9,10,12,13,14,15,16\right\} $ are constructed. In addition, we obtained at least 762 new extremal Type Ⅰ $ \mathbb{Z}_{4} $-codes of types $ 4^{k}2^{32-2k} $, $ k\in\left\{7,9,10,12,13,14,15,16\right\} $. For the length 40, constructed extremal $ \mathbb{Z}_{4} $-codes are of types $ 4^{k}2^{40-2k} $, $ k\in\left\{7,10,11,15,16\right\} $. There are at least 40 new Type Ⅱ extremal $ \mathbb{Z}_{4} $-codes, and at least 4144 new Type Ⅰ extremal $ \mathbb{Z}_{4} $-codes.

    Mathematics Subject Classification: Primary: 94B05; Secondary: 94B65.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  A comparison of the RS, NS-L, and NS-R algorithms

    Table 1.  The type and the number of the known extremal Type Ⅱ $ \mathbb{Z}_{4} $-codes of length 32

    Type $ 4^{6} 2^{20} $ $ 4^{7} 2^{18} $ $ 4^{8} 2^{16} $ $ 4^{9} 2^{14} $ $ 4^{10} 2^{12} $ $ 4^{11} 2^{10} $
    # $ 1 $ $ 7 $ $ 27 $ $ 15 $ $ 5 $ $ 3 $
    References [17] [1,2,17] [1,17] [1,2,17] [1,2,17] [17,27]
    Type $ 4^{12} 2^{8} $ $ 4^{13} 2^{6} $ $ 4^{14} 2^{4} $ $ 4^{15} 2^{2} $ $ 4^{16} $
    # $ 1 $ $ 220 $ $ 5148 $ $ 356 $ $ 134 $
    References [17] [10,17] [1,10,17] [10,17] [15,17]
     | Show Table
    DownLoad: CSV

    Table 2.  The type and the number of the known extremal Type Ⅱ $ \mathbb{Z}_{4} $-codes of length 40

    Type $ 4^{7} 2^{26} $ $ 4^{8} 2^{24} $ $ 4^{9} 2^{22} $ $ 4^{10} 2^{20} $ $ 4^{11} 2^{18} $ $ 4^{12} 2^{16} $ $ 4^{13} 2^{14} $
    # $ 3 $ $ 228 $ $ 100 $ $ 2 $ $ 3 $ $ 20 $ $ 15 $
    References [3,17] [3,17] [3,17] [3,17] [3,17] [3,17] [3,17,27]
    Type $ 4^{14} 2^{12} $ $ 4^{15} 2^{10} $ $ 4^{16} 2^{8} $ $ 4^{17}2^{6} $ $ 4^{18}2^{4} $ $ 4^{19}2^{2} $ $ 4^{20} $
    # $ 5 $ $ 3 $ $ 1 $ $ 134 $ $ 902 $ $ 432 $ $ 94343 $
    References [3,17] [3,17] [17] [10,17] [3,10,17] [10,17] [20,27]
     | Show Table
    DownLoad: CSV

    Table 3.  The parameter $ r $ given by (6)

    $ b_{i,j}=b_{j,i} $ $ b_{i,j}\neq b_{j,i} $
    $ c_i $ $ c_j $ $ |I|\left( \text{mod }2\right) $ $ |J|\left( \text{mod }2\right) $ $ r $ $ c_i $ $ c_j $ $ |I|\left( \text{mod }2\right) $ $ |J|\left( \text{mod }2\right) $ $ r $
    0 1, 3 0 $ * $ 1 0 1, 3 0 $ * $ -1
    1 $ * $ -1 1 $ * $ 1
    1, 3 0 $ * $ 0 1 1, 3 0 $ * $ 0 1
    $ * $ 1 -1 $ * $ 1 -1
    2 1, 3 0 $ * $ -1 2 1, 3 0 $ * $ 1
    1 $ * $ 1 1 $ * $ -1
    1, 3 2 $ * $ 0 -1 1, 3 2 $ * $ 0 -1
    $ * $ 1 1 $ * $ 1 1
     | Show Table
    DownLoad: CSV

    Table 4.  Invariants of the known extremal Type Ⅱ $ \mathbb{Z}_{4} $-codes of length 32

    The type Reference # Invariants The type Reference # Invariants
    $ 4^{7}2^{18} $ [1] 5 $ d=12 $ $4^{13}2^{6}$ [10] 219 $108251\leq W_{16}^E\leq 109467$
    [2] 1 $ A_4=4 $ [17] 1 $W_{16}^E=115232$, $A_4=36$
    [17] 1 $ W_{16}^E=125080 $ $4^{15}2^{2}$ [10] 355 $d=8$
    $ 4^{9}2^{14} $ [1] 12 $ d=8 $ [17] 1 $A_4=72$
    [2] 2 $ d=8 $ $4^{16}$ [15] 54 $d=8$
    [17] 1 $ A_4=4 $ 80 $W_{16}^E=110678$*
    $ 4^{10}2^{12} $ [1] 3 $ d=12 $ [17] $W_{16}^E=110984$*
    [2] 1 $ d=8 $ $W_{16}^E=113496$*
    [17] 1 $ A_4=10 $ $W_{16}^E=110928$*
     | Show Table
    DownLoad: CSV

    Table 5.  Extremal Type Ⅰ $ \mathbb{Z}_4 $-codes from $ C_{32,1},\ldots,C_{32,21} $ obtained by RS algorithm

    The binary code # of obtained extremal $ \mathbb{Z}_4 $-codes # of nonequivalent codes The type The binary residue code
    $ C_{32,3} $ 13 $ \geq10 $ $ 4^{12}2^{8} $ [32, 12, 4]
    $ C_{32,4} $ 6 $ \geq6 $ $ 4^{15}2^{2} $ [32, 15, 4]
    $ C_{32,8} $ 35 $ \geq2 $ $ 4^{10}2^{12} $ [32, 10, 4]
    $ C_{32,12} $ 5 $ \geq5 $ $ 4^{13}2^{6} $ [32, 13, 4]
    $ C_{32,15} $ 210 $ \geq2 $ $ 4^{10}2^{12} $ [32, 10, 4]
    $ C_{32,16} $ 272 $ \geq240 $ $ 4^{16} $ [32, 16, 4]
    $ C_{32,18} $ 44 $ \geq1 $ $ 4^{10}2^{12} $ [32, 10, 4]
    $ C_{32,19} $ 188 $ \geq177 $ $ 4^{13}2^{6} $ [32, 13, 4]
     | Show Table
    DownLoad: CSV

    Table 6.  Extremal $ \mathbb{Z}_{4} $-codes of length 32 obtained with the NS-R algorithm from $ C_{32,1},\ldots,C_{32,21} $

    The binary code # of obtained extremal $ \mathbb{Z}_{4} $-codes # of nonequivalent Type Ⅰ # of nonequivalent Type Ⅱ The type The binary residue code
    $ C_{32,2} $ 6137 $ \geq3 $ $ \geq1 $ $ 4^{9}2^{14} $ $ [32,9,8] $
    $ C_{32,3} $ 161 $ \geq88 $ $ \geq35 $ $ 4^{12}2^{8} $ $ [32,12,4] $
    $ C_{32,4} $ 42 $ 24 $ $ 18 $ $ 4^{15}2^{2} $ $ [32,15,4] $
    $ C_{32,5} $ 1664 $ \geq2 $ $ \geq1 $ $ 4^{9}2^{14} $ $ [32,9,4] $
    $ C_{32,6} $ 27 $ 0 $ $ \geq27 $ $ 4^{15}2^{2} $ $ [32,15,4] $
    $ C_{32,7} $ 3035 $ \geq3 $ $ \geq1 $ $ 4^{9}2^{14} $ $ [32,9,8] $
    $ C_{32,8} $ 532 $ \geq21(1) $ $ \geq6 $ $ 4^{10}2^{12} $ $ [32,10,4] $
    $ C_{32,9} $ 11 $ 0 $ $ 11 $ $ 4^{16} $ $ [32,16,4] $
    $ C_{32,10} $ 44687 $ \geq3 $ $ \geq1 $ $ 4^{7}2^{18} $ $ [32,7,8] $
    $ C_{32,11} $ 409 $ 0 $ $ \geq1 $ $ 4^{10}2^{12} $ $ [32,10,8] $
    $ C_{32,12} $ 7 $ 2 $ $ 5 $ $ 4^{13}2^{6} $ $ [32,13,4] $
    $ C_{32,13} $ 11 $ 0 $ $ 11 $ $ 4^{16} $ $ [32,16,4] $
    $ C_{32,14} $ 722 $ \geq2 $ $ \geq1 $ $ 4^{10}2^{12} $ $ [32,10,8] $
    $ C_{32,15} $ 3456 $ \geq99(1) $ $ \geq24 $ $ 4^{10}2^{12} $ $ [32,10,4] $
    $ C_{32,16} $ 17 $ 8(1) $ $ 9 $ $ 4^{16} $ $ [32,16,4] $
    $ C_{32,17} $ 4800 $ \geq2 $ $ \geq1 $ $ 4^{7}2^{18} $ $ [32,7,4] $
    $ C_{32,18} $ 24 $ \geq5 $ $ \geq1 $ $ 4^{10}2^{12} $ $ [32,10,4] $
    $ C_{32,19} $ 109 $ \geq55(2) $ $ \geq49 $ $ 4^{13}2^{6} $ $ [32,13,4] $
    $ C_{32,20} $ 1483 $ \geq7 $ $ \geq5 $ $ 4^{10}2^{12} $ $ [32,10,4] $
    $ C_{32,21} $ 8 $ 0 $ $ 8 $ $ 4^{16} $ $ [32,16,4] $
     | Show Table
    DownLoad: CSV

    Table 7.  The number of codewords of Euclidean weight 16 in extremal Type Ⅱ $ \mathbb{Z}_{4} $-codes

    The residue code $ W_{16}^E $
    $ C_{32,9} $ 110632, 110664, 110708, 110756, 110772, 110800, 110808, 110844, 110948, 110980, 111424
    $ C_{32,13} $ 110440, 110480, 110536, 110608, 110784, 110784, 110888, 111016, 111032, 111200, 111240
    $ C_{32,16} $ 112984, 113128, 113400, 113608, 113752, 113816, 113896, 114024, 114360
    $ C_{32,21} $ 110346, 110374, 110546, 110574, 110626, 110714, 110770, 110918
     | Show Table
    DownLoad: CSV

    Table 8.  Weight distributions of doubly even binary codes of length 40

    Code Reference [n, k, d] 0 4 8 12 16 20
    $ C_{40,1} $ [17] $ \left[40,7,12\right] $ 1 1 11 102
    $ C_{40,2} $ [17] $ \left[40,7,16\right] $ 1 15 96
    $ C_{40,3} $ [17] $ \left[40,10,4\right] $ 1 6 1 10 150 688
    $ C_{40,4} $ [3] $ \left[40,10,12\right] $ 1 18 223 540
    $ C_{40,5} $ [17] $ \left[40,11,4\right] $ 1 10 6 22 313 1344
    $ C_{40,6} $ [3] $ \left[40,11,12\right] $ 1 34 479 1020
    $ C_{40,7} $ [3] $ \left[40,11,12\right] $ 1 42 447 1068
    $ C_{40,8} $ [17] $ \left[40,15,4\right] $ 1 37 175 688 5296 20374
    $ C_{40,9} $ [3] $ \left[40,15,8\right] $ 1 10 634 7589 16300
    $ C_{40,10} $ [3] $ \left[40,15,8\right] $ 1 6 658 7529 16380
    $ C_{40,11} $ [17] $ \left[40,16,4\right] $ 1 47 313 1548 10694 40330
    $ C_{40,12},C_{40,13} $ [20] $ [40,20,8] $ 1 0 285 21280 239970 525504
    $ C_{40,14} $ [20] $ [40,20,4] $ 1 190 4845 38760 125970 709044
     | Show Table
    DownLoad: CSV

    Table 9.  Extremal $ \mathbb{Z}_4 $-codes of length 40 obtained with the modified search algorithm from $ C_{40,1},\ldots,C_{40,14} $

    The binary code The type # of obtained extremal $ \mathbb{Z}_4 $ codes # of nonequivalent Type Ⅰ # of nonequivalent Type Ⅱ
    $ C_{40,1} $ $ 4^{7}2^{26} $ 488 $ \geq4 $ $ \geq1 $
    $ C_{40,2} $ $ 4^{7}2^{26} $ 959 $ \geq3 $ $ 0 $
    $ C_{40,3} $ $ 4^{10}2^{20} $ 17 $ \geq6 $ $ 0 $
    $ C_{40,4} $ $ 4^{10}2^{20} $ 129 $ \geq3 $ $ \geq3 $
    $ C_{40,5} $ $ 4^{11}2^{18} $ 7 $ 7 $ $ 0 $
    $ C_{40,6} $ $ 4^{11}2^{18} $ 31 $ 0 $ $ \geq5 $
    $ C_{40,7} $ $ 4^{11}2^{18} $ 13 $ 0 $ $ \geq4 $
    $ C_{40,8} $ $ 4^{15}2^{10} $ 37 $ \geq17 $ $ 0 $
    $ C_{40,9} $ $ 4^{15}2^{10} $ 7 $ 0 $ $ 7 $
    $ C_{40,10} $ $ 4^{15}2^{10} $ 9 $ 0 $ $ 9 $
    $ C_{40,11} $ $ 4^{16}2^{8} $ 104 $ \geq14 $ $ \geq1 $
    $ C_{40,12} $ $ 4^{20} $ 7 $ 0 $ $ 7 $
    $ C_{40,13} $ $ 4^{20} $ 1 $ 0 $ $ 1 $
    $ C_{40,14} $ $ 4^{20} $ 4194 $ \geq4090 $ $ \geq3 $
     | Show Table
    DownLoad: CSV

    Table 10.  The number of codewords of Euclidean weight 16 ($ W_{16}^E $) in extremal Type Ⅱ $ \mathbb{Z}_{4} $-codes of length 40

    The binary code The type $ W_{16}^E $ of the known extremal $ \mathbb{Z}_{4} $-codes $ W_{16}^E $ of the constructed extremal $ \mathbb{Z}_{4} $-codes
    $ C_{40,1} $ $ 4^{7}2^{26} $ - 14598
    $ C_{40,4} $ $ 4^{10}2^{20} $ 32566 32822, 32694, 32950
    $ C_{40,6} $ $ 4^{11}2^{18} $ 34574 34446, 34574, 34702, 34638, 34510
    $ C_{40,7} $ $ 4^{11}2^{18} $ 33406 33406, 33726, 33214, 33342
    $ C_{40,9} $ $ 4^{15}2^{10} $ 34657 35015, 34733, 34779, 34633, 34899, 34869, 34685
    $ C_{40,10} $ $ 4^{15}2^{10} $ 34935 34745, 34845, 34723, 34675, 34839, 34797, 34855, 34729, 34879
    $ C_{40,11} $ $ 4^{16}2^{8} $ 27298 27098
    $ C_{40,12} $ $ 4^{20} $ 34730 34552, 34540, 34584, 34596, 34794, 34850, 34992
    $ C_{40,13} $ $ 4^{20} $ 34694 34570
    $ C_{40,14} $ $ 4^{20} $ 25918 24030, 25214, 26014
     | Show Table
    DownLoad: CSV
  • [1] S. Ban, Construction of Extremal Type II Z4-Codes, PhD Thesis, University of Zagreb, Croatia, 2019.
    [2] S. Ban, D. Crnković, M. Mravić and S. Rukavina, New extremal Type Ⅱ $ \mathbb{Z}_{4}$ -codes of length 32 obtained from Hadamard matrices, Discrete Math. Algorithms Appl., 11 (2019), 1950057, 18 pp. doi: 10.1142/s1793830919500575.
    [3] S. Ban and S. Rukavina, On some new extremal Type Ⅱ $\mathbb{Z}_{4} $-codes of length 40, Math. Commun., 25 (2020), 253-268. 
    [4] K. Betsumiya, M. Harada and A. Munemasa, A complete classification of doubly even self-dual codes of length 40, Electron. J. Comb., 19 (2012), Paper 18, 12 pp. doi: 10.37236/2593.
    [5] R. A. L. Betty and A. Munemasa, Classification of Self-dual Codes of Length 20 over $ \mathbb{Z }_4$ and Length at Most 18 over $\mathbb{F}_2+u\mathbb{F}_2 $, Cryptography and Coding (ed. Albrecht, M.), IMACC 2019, Lecture Notes in Computer Science, Springer, Cham., 11929 (2019), 64-77.
    [6] R. A. L. Betty and A. Munemasa, Classification of Extremal Type Ⅱ $\mathbb{Z }_4 $-codes of Length 24, WCC 2022: The Twelfth International Workshop on Coding and Cryptography, University of Rostock, Germany, (2022), https://www.wcc2022.uni-rostock.de/storages/uni-rostock/Tagungen/WCC2022/Papers/WCC_2022_paper_8.pdf.
    [7] A. BonnecazeP. SoléC. Bachoc and B. Mourrain, Type Ⅱ codes over $ \mathbb{Z}_{4}$, IEEE Trans. Inf. Theory, 43 (1997), 969-976.  doi: 10.1109/18.568705.
    [8] W. BosmaJ. Cannon and C. Playoust, The Magma algebra system. Ⅰ. The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.
    [9] S. BouyuklievaI. Bouyukliev and M. Harada, Some extremal self-dual codes and unimodular lattices in dimension 40, Finite Fields Their Appl., 21 (2013), 67-83.  doi: 10.1016/j.ffa.2013.01.009.
    [10] K. H. Chan, Three New Methods for Construction of Extremal Type II $\mathbb{Z}_{4} $-Codes, Ph.D thesis, University of Illinois at Chicago, 2012.
    [11] J. H. Conway and N. J. A. Sloane, Self-dual codes over the integers modulo 4, J. Comb. Theory, Ser. A, 62 (1993), 30-45.  doi: 10.1016/0097-3165(93)90070-O.
    [12] D. Crnković and M.-O. Pavčević, Some new symmetric designs with parameters (64, 28, 12), Discrete Math., 237 (2001), 109-118.  doi: 10.1016/S0012-365X(00)00364-2.
    [13] J. FieldsP. GaboritJ. S. Leon and V. Pless, All self-dual $ \mathbb{Z}_{4}$ codes of length 15 or less are known, IEEE Trans. Inf. Theory, 44 (1998), 311-322.  doi: 10.1109/18.651058.
    [14] P. Gaborit, Mass formulas for self-dual codes over $ \mathbb{Z}_{4}$ and $\mathbb{F}_q+u\mathbb{F}_q $ rings, IEEE Trans. Inform. Theory, 42 (1996), 1222-1228.  doi: 10.1109/18.508845.
    [15] P. Gaborit and M. Harada, Construction of extremal type Ⅱ codes over $\mathbb{Z}_4 $, Des. Codes, Cryptogr., 16 (1999), 257-269.  doi: 10.1023/A:1008335912135.
    [16] M. Harada, Extremal type Ⅱ $\mathbb{Z}_{4} $-codes of lengths 56 and 64, J. Comb. Theory, Ser. A., 117 (2010), 1285-1288.  doi: 10.1016/j.jcta.2009.09.003.
    [17] M. Harada, On the residue codes of extremal type Ⅱ $ \mathbb{Z}_{4}$-codes of lengths 32 and 40, Discrete Math., 311 (2011), 2148-2157.  doi: 10.1016/j.disc.2011.06.022.
    [18] M. Harada, Extremal Type Ⅰ $ \mathbb{Z}_k$-codes and k-frames of odd unimodular lattices, IEEE Trans. Inf. Theory, 61 (2015), 72-81. 
    [19] M. Harada, Note on the residue codes of self-dual $ \mathbb{Z}_4$-codes having large minimum Lee weights, Adv. Math. Commun., 10 (2016), 695-706.  doi: 10.3934/amc.2016035.
    [20] M. Harada, Extremal type Ⅱ $ \mathbb{Z}_4$-codes constructed from binary doubly even self-dual codes of length $40$, Discrete Math., 340 (2017), 253-268.  doi: 10.1016/j.disc.2017.06.009.
    [21] M. Harada, Construction of extremal type Ⅱ $\mathbb{Z}_2k $-codes, Finite Fields Appl., 87 (2023), 102154, 17 pp. doi: 10.1016/j.ffa.2022.102154.
    [22] M. HaradaM. KitazumeA. Munemasa and B. Venkov, On some self-dual codes and unimodular lattices in dimension 48, Eur. J. Comb., 26 (2005), 543-557.  doi: 10.1016/j.ejc.2004.06.013.
    [23] M. Harada and A. Munemasa, On the classification of self-dual $ \mathbb{Z}_k$-codes, Cryptography and Coding (ed. Parker, M. G.), IMACC 2009, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 5921 (2009), 78-90. doi: 10.1007/978-3-642-10868-6_6.
    [24] W. C. Huffman and  V. PlessFundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.
    [25] Z. Janko, Coset enumeration in groups and constructions of symmetric designs, Ann. Discrete Math., 52 (1992), 275-277. 
    [26] V. PlessJ. S. Leon and J. Fields, All $ \mathbb{Z}_{4}$ codes of type Ⅱ and length 16 are known, J. Comb. Theory, Ser. A, 78 (1997), 32-50. 
    [27] V. PlessP. Solé and Z. Qian, Cyclic self-dual $\mathbb{Z}_{4} $-codes, Finite Fields Appl., 3 (1997), 48-69.  doi: 10.1006/ffta.1996.0172.
  • 加载中

Figures(1)

Tables(10)

SHARE

Article Metrics

HTML views(2361) PDF downloads(701) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return