[1]
|
S. Ban, Construction of Extremal Type II Z4-Codes, PhD Thesis, University of Zagreb, Croatia, 2019.
|
[2]
|
S. Ban, D. Crnković, M. Mravić and S. Rukavina, New extremal Type Ⅱ $ \mathbb{Z}_{4}$ -codes of length 32 obtained from Hadamard matrices, Discrete Math. Algorithms Appl., 11 (2019), 1950057, 18 pp.
doi: 10.1142/s1793830919500575.
|
[3]
|
S. Ban and S. Rukavina, On some new extremal Type Ⅱ $\mathbb{Z}_{4} $-codes of length 40, Math. Commun., 25 (2020), 253-268.
|
[4]
|
K. Betsumiya, M. Harada and A. Munemasa, A complete classification of doubly even self-dual codes of length 40, Electron. J. Comb., 19 (2012), Paper 18, 12 pp.
doi: 10.37236/2593.
|
[5]
|
R. A. L. Betty and A. Munemasa, Classification of Self-dual Codes of Length 20 over $ \mathbb{Z }_4$ and Length at Most 18 over $\mathbb{F}_2+u\mathbb{F}_2 $, Cryptography and Coding (ed. Albrecht, M.), IMACC 2019, Lecture Notes in Computer Science, Springer, Cham., 11929 (2019), 64-77.
|
[6]
|
R. A. L. Betty and A. Munemasa, Classification of Extremal Type Ⅱ $\mathbb{Z }_4 $-codes of Length 24, WCC 2022: The Twelfth International Workshop on Coding and Cryptography, University of Rostock, Germany, (2022), https://www.wcc2022.uni-rostock.de/storages/uni-rostock/Tagungen/WCC2022/Papers/WCC_2022_paper_8.pdf.
|
[7]
|
A. Bonnecaze, P. Solé, C. Bachoc and B. Mourrain, Type Ⅱ codes over $ \mathbb{Z}_{4}$, IEEE Trans. Inf. Theory, 43 (1997), 969-976.
doi: 10.1109/18.568705.
|
[8]
|
W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. Ⅰ. The user language, J. Symbolic Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125.
|
[9]
|
S. Bouyuklieva, I. Bouyukliev and M. Harada, Some extremal self-dual codes and unimodular lattices in dimension 40, Finite Fields Their Appl., 21 (2013), 67-83.
doi: 10.1016/j.ffa.2013.01.009.
|
[10]
|
K. H. Chan, Three New Methods for Construction of Extremal Type II $\mathbb{Z}_{4} $-Codes, Ph.D thesis, University of Illinois at Chicago, 2012.
|
[11]
|
J. H. Conway and N. J. A. Sloane, Self-dual codes over the integers modulo 4, J. Comb. Theory, Ser. A, 62 (1993), 30-45.
doi: 10.1016/0097-3165(93)90070-O.
|
[12]
|
D. Crnković and M.-O. Pavčević, Some new symmetric designs with parameters (64, 28, 12), Discrete Math., 237 (2001), 109-118.
doi: 10.1016/S0012-365X(00)00364-2.
|
[13]
|
J. Fields, P. Gaborit, J. S. Leon and V. Pless, All self-dual $ \mathbb{Z}_{4}$ codes of length 15 or less are known, IEEE Trans. Inf. Theory, 44 (1998), 311-322.
doi: 10.1109/18.651058.
|
[14]
|
P. Gaborit, Mass formulas for self-dual codes over $ \mathbb{Z}_{4}$ and $\mathbb{F}_q+u\mathbb{F}_q $ rings, IEEE Trans. Inform. Theory, 42 (1996), 1222-1228.
doi: 10.1109/18.508845.
|
[15]
|
P. Gaborit and M. Harada, Construction of extremal type Ⅱ codes over $\mathbb{Z}_4 $, Des. Codes, Cryptogr., 16 (1999), 257-269.
doi: 10.1023/A:1008335912135.
|
[16]
|
M. Harada, Extremal type Ⅱ $\mathbb{Z}_{4} $-codes of lengths 56 and 64, J. Comb. Theory, Ser. A., 117 (2010), 1285-1288.
doi: 10.1016/j.jcta.2009.09.003.
|
[17]
|
M. Harada, On the residue codes of extremal type Ⅱ $ \mathbb{Z}_{4}$-codes of lengths 32 and 40, Discrete Math., 311 (2011), 2148-2157.
doi: 10.1016/j.disc.2011.06.022.
|
[18]
|
M. Harada, Extremal Type Ⅰ $ \mathbb{Z}_k$-codes and k-frames of odd unimodular lattices, IEEE Trans. Inf. Theory, 61 (2015), 72-81.
|
[19]
|
M. Harada, Note on the residue codes of self-dual $ \mathbb{Z}_4$-codes having large minimum Lee weights, Adv. Math. Commun., 10 (2016), 695-706.
doi: 10.3934/amc.2016035.
|
[20]
|
M. Harada, Extremal type Ⅱ $ \mathbb{Z}_4$-codes constructed from binary doubly even self-dual codes of length $40$, Discrete Math., 340 (2017), 253-268.
doi: 10.1016/j.disc.2017.06.009.
|
[21]
|
M. Harada, Construction of extremal type Ⅱ $\mathbb{Z}_2k $-codes, Finite Fields Appl., 87 (2023), 102154, 17 pp.
doi: 10.1016/j.ffa.2022.102154.
|
[22]
|
M. Harada, M. Kitazume, A. Munemasa and B. Venkov, On some self-dual codes and unimodular lattices in dimension 48, Eur. J. Comb., 26 (2005), 543-557.
doi: 10.1016/j.ejc.2004.06.013.
|
[23]
|
M. Harada and A. Munemasa, On the classification of self-dual $ \mathbb{Z}_k$-codes, Cryptography and Coding (ed. Parker, M. G.), IMACC 2009, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 5921 (2009), 78-90.
doi: 10.1007/978-3-642-10868-6_6.
|
[24]
|
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.
|
[25]
|
Z. Janko, Coset enumeration in groups and constructions of symmetric designs, Ann. Discrete Math., 52 (1992), 275-277.
|
[26]
|
V. Pless, J. S. Leon and J. Fields, All $ \mathbb{Z}_{4}$ codes of type Ⅱ and length 16 are known, J. Comb. Theory, Ser. A, 78 (1997), 32-50.
|
[27]
|
V. Pless, P. Solé and Z. Qian, Cyclic self-dual $\mathbb{Z}_{4} $-codes, Finite Fields Appl., 3 (1997), 48-69.
doi: 10.1006/ffta.1996.0172.
|