We consider the quasi-twisted codes as contractions of quasi-cyclic codes and construct a family of $ q $-ary quasi-cyclic codes whose codewords have $ r $-divisible weights, where $ r\mid q-1 $. We show that any quasi-cyclic code of co-index divisible by $ r $ is a direct sum of $ r $-divisible quasi-cyclic codes.
Citation: |
[1] | J. Bierbrauer, The theory of cyclic codes and a generalization to additive codes, Des. Codes Cryptog., 25 (2002), 189-206. doi: 10.1023/A:1013808515797. |
[2] | M. F. Ezerman, J. M. Lampos, S. Ling, B. Özkaya and J. Tharnnukhroh, A comparison of distance bounds for quasi-twisted codes, IEEE Trans. Inf. Theory, 67 (2021), 6476-6490. doi: 10.1109/TIT.2021.3084146. |
[3] | M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, (2023), online available at http://www.codetables.de. |
[4] | C. Güneri and F. Özbudak, A bound on the minimum distance of quasi-cyclic codes, SIAM J. Discrete Math., 26 (2012), 1781-1796. doi: 10.1137/120865823. |
[5] | J. M. Jensen, The concatenated structure of cyclic and abelian codes, IEEE Trans. Inform. Theory, 31 (1985), 788-793. doi: 10.1109/TIT.1985.1057109. |
[6] | Y. Jia, On quasi-twisted codes over finite fields, Finite Fields Appl., 18 (2012), 237-257. doi: 10.1016/j.ffa.2011.08.001. |
[7] | K. Lally and P. Fitzpatrick, Algebraic structure of quasi-cyclic codes, Discrete Appl. Math., 111 (2001), 157-175. doi: 10.1016/S0166-218X(00)00350-4. |
[8] | J. Lv and J. Gao, A minimum distance bound for 2-dimension $\lambda$-quasi-twisted codes over finite fields, Finite Fields Appl., 51 (2018), 146-167. doi: 10.1016/j.ffa.2018.01.008. |
[9] | P. Semenov and P. Trifonov, Spectral method for quasi-cyclic code analysis, IEEE Comm. Letters, 16 (2012), 1840-1843. |