\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

New bounds for covering codes of radius 3 and codimension $ 3t+1 $

  • * Corresponding author: Fernanda Pambianco

    * Corresponding author: Fernanda Pambianco
Abstract / Introduction Full Text(HTML) Figure(3) / Table(1) Related Papers Cited by
  • The smallest possible length of a $ q $-ary linear code of covering radius $ R $ and codimension (redundancy) $ r $ is called the length function and is denoted by $ \ell_q(r, R) $. In this work, for $ q $ an arbitrary prime power, we obtain the following new constructive upper bounds on $ \ell_q(3t+1,3) $:

    $ \begin{equation*} \begin{split} &\bullet\; \ell_q(r,3)\lessapprox \sqrt[3]{k}\cdot q^{(r-3)/3}\cdot\sqrt[3]{\ln q}, \; r = 3t+1, \; t\ge1, \; q\ge\lceil \mathcal{W}(k)\rceil, \\ &\phantom{\bullet\; }18 <k\le20.339, \; \mathcal{W}(k){\text{ is a decreasing function of }}k ;\\ &\bullet\; \ell_q(r,3)\lessapprox \sqrt[3]{18}\cdot q^{(r-3)/3}\cdot\sqrt[3]{\ln q}, \; r = 3t+1, \; t\ge1, \; q{\text{ large enough}}. \end{split} \end{equation*} $

    For $ t = 1 $, we use a one-to-one correspondence between codes of covering radius 3 and codimension 4, and 2-saturating sets in the projective space $ {\mathrm{PG}}(3, q) $. A new construction providing sets of small size is proposed. The codes, obtained by geometrical methods, are taken as the starting ones in the lift-constructions (so-called "$ q^m $-concatenating constructions") to obtain infinite families of codes with radius 3 and growing codimension $ r = 3t + 1 $, $ t\ge1 $. The new bounds are essentially better than the known ones.

    Mathematics Subject Classification: Primary: 94B05; Secondary: 51E21, 51E22.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Upper bounds on the length function $ \ell_q(4,3) $ divided by $ \sqrt[3]{q\ln q} $: implicit Bound A (3.5)–(3.6) for $ 8233\le q<10^5 $ (the second curve), computer Bound E (3.25) for $ 13\le q\le8231 $ (the bottom curve) vs the known bound (5.1)–(5.2) for $ 14983\le q<10^5 $ (the top curve)

    Figure 2.  Upper bounds on the length function $ \ell_q(4,3) $ divided by $ \sqrt[3]{q\ln q} $: implicit Bound A (3.5)–(3.6) (the bottom, solid curve), implicit Bound B (3.10)–(3.11) (the second, dashed curve), and explicit Bound C (points $ 1 $, $ 2 $, and $ 3 $ correspond to $ n^{\text{C}}_{4, q}(k)/\sqrt[3]{ q\ln q} $ with $ k = 20.339, \;20 $, and $ 19.7 $, by Table 1) vs the known bound (5.1)–(5.2) (the top, solid curve), $ 10^5< q<5\cdot10^6 $

    Figure 3.  The ratio $ n^{knw}_{4, q}/n^{\mathrm{A}}_{4, q} $ of the known [17] upper bound $ n^{knw}_{4, q} $ (5.1)–(5.2) on the length function $ \ell_q(4,3) $ and the new one $ n^{\mathrm{A}}_{4, q} $ (3.5)–(3.6), $ 14983\le q<5\cdot10^6 $

    Table 1.  Values of $ \lceil \mathcal{W}(k)\rceil $ for $ 18.0001\le k\le 20.340 $ and values of $ n^{\text{C}}_{4, q}(k)/\sqrt[3]{ q\ln q} $, $ n^{knw}_{4, q}/\sqrt[3]{q\ln q} $ (the known bound), $ n^{knw}_{4, q}/n^{\text{C}}_{4, q}(k) $ for $ q = \lceil \mathcal{W}(k)\rceil $, $ 18.0001\le k\le 20.339 $. ($ \mathcal{V} = 1516750 $)

    $ k $ $ \lceil \mathcal{W}(k)\rceil $ $ \frac{n^{\text{C}}_{4, q}(k)}{\sqrt[3]{ q\ln q}} $ $ \frac{n^{knw}_{4, q}}{\sqrt[3]{q\ln q}} $ $ \frac{n^{knw}_{4, q}}{n^{\text{C}}_{4, q}(k)} $
    20.340 $ 1515738\thickapprox1.516\cdot10^{6}< \mathcal{V} $
    20.339 $ 1517567\thickapprox1.518\cdot10^{6}> \mathcal{V} $ 2.7368 5.2500 1.9183
    20.335 $ 1524915\thickapprox1.525\cdot10^{6}> \mathcal{V} $ 2.7367 5.2495 1.9182
    20 $ 2374364\thickapprox2.374\cdot10^{6}> \mathcal{V} $ 2.7205 5.2087 1.9146
    19.7 $ 3820987\thickapprox3.821\cdot10^{6}> \mathcal{V} $ 2.7059 5.1716 1.9112
    19 $ 19178705\thickapprox1.918\cdot10^{7}> \mathcal{V} $ 2.6713 5.0828 1.9027
    18.5 $ 171670620\thickapprox1.717\cdot10^{8}> \mathcal{V} $ 2.6461 5.0180 1.8963
    18.1 $ 30640000001\thickapprox3.064\cdot10^{10}> \mathcal{V} $ 2.6258 4.9659 1.8912
    18.05 $ 294427001643\thickapprox2.944\cdot10^{11}> \mathcal{V} $ 2.6233 4.9593 1.8905
    18.01 $ 52060446118120\thickapprox5.206\cdot10^{13}> \mathcal{V} $ 2.6212 4.9542 1.8900
    18.001 $ \thickapprox7.880\cdot 10^{16}> \mathcal{V} $ 2.6208 4.9530 1.8899
    18.0001 $ \thickapprox1.109\cdot 10^{20}> \mathcal{V} $ 2.6207 4.9529 1.8899
     | Show Table
    DownLoad: CSV
  • [1] D. Bartoli, A. A. Davydov, M. Giulietti, S. Marcugini and F. Pambianco, New upper bounds on the smallest size of a saturating set in a projective plane, 2016 XV Int. Symp. Problems of Redundancy in Inform. and Control Systems (REDUNDANCY), IEEE, St. Petersburg, Russia, Sept., (2016), 18-22. doi: 10.1109/RED.2016.7779320.
    [2] D. BartoliA. A. DavydovM. GiuliettiS. Marcugini and F. Pambianco, New bounds for linear codes of covering radius 2, Coding Theory and Applications, Lecture Notes in Computer Science, Springer, Cham, 10495 (2017), 1-10.  doi: 10.1007/978-3-319-66278-7_1.
    [3] D. BartoliA. A. DavydovM. GiuliettiS. Marcugini and F. Pambianco, New bounds for linear codes of covering radii 2 and 3, Crypt. Commun., 11 (2019), 903-920.  doi: 10.1007/s12095-018-0335-0.
    [4] D. Bartoli, A. A. Davydov, S. Marcugini and F. Pambianco, Tables, bounds and graphics of short linear codes with covering radius 3 and codimension 4 and 5, preprint, arXiv: 1712.07078.
    [5] E. BorosT. Szőnyi and K. Tichler, On defining sets for projective planes, Discrete Math., 303 (2005), 17-31.  doi: 10.1016/j.disc.2004.12.015.
    [6] R. A. BrualdiS. Litsyn and V. S. Pless, Covering radius, Handbook of Coding Theory, North-Holland, Amsterdam, 1, 2 (1998), 755-826. 
    [7] H. Chen, L. Qu, C. Li, S. Lyu and L. Xu, Generalized Singleton type upper bounds, preprint, arXiv: 2208.01138.
    [8] G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering Codes, North-Holland Math. Library, 54. Elsevier, Amsterdam, The Netherlands, 1997.
    [9] R. M. CorlessG. H. GonnetD. E. G. HareD. J. Jeffrey and D. E. Knuth, On the Lambert $W$ function (PostScript), Adv. Computat. Math., 5 (1996), 329-359.  doi: 10.1007/BF02124750.
    [10] A. A. Davydov, Construction of linear covering codes, Probl. Inform. Transmiss., 26 (1990), 317-331, Available from: http://iitp.ru/upload/publications/6833/ConstrCoverCodes.pdf.
    [11] A. A. Davydov, Constructions and families of covering codes and saturated sets of points in projective geometry, IEEE Trans. Inform. Theory, 41 (1995), 2071-2080.  doi: 10.1109/18.476339.
    [12] A. A. DavydovM. GiuliettiS. Marcugini and F. Pambianco, Linear nonbinary covering codes and saturating sets in projective spaces, Adv. Math. Commun., 5 (2011), 119-147.  doi: 10.3934/amc.2011.5.119.
    [13] A. A. DavydovS. Marcugini and F. Pambianco, Linear codes with covering radius 2, 3, and saturating sets in projective geometry, IEEE Trans. Inform. Theory, 50 (2004), 537-541.  doi: 10.1109/TIT.2004.825503.
    [14] A. A. DavydovS. Marcugini and F. Pambianco, New covering codes of radius $R$, codimension $tR$ and $tR+\frac{R}{2}$, and saturating sets in projective spaces, Des. Codes Cryptogr., 87 (2019), 2771-2792.  doi: 10.1007/s10623-019-00649-2.
    [15] A. A. Davydov, S. Marcugini and F. Pambianco, New bounds for linear codes of covering radius 3 and 2-saturating sets in projective spaces, Proc. 2019 XVI Int. Symp. Problems Redundancy Inform. Control Systems (REDUNDANCY), Moscow, Russia, Oct. 2019, IEEE Xplore, (2020), 47-52. doi: 10.1109/REDUNDANCY48165.2019.9003348.
    [16] A. A. DavydovS. Marcugini and F. Pambianco, Bounds for complete arcs in ${\mathrm{PG}}(3, q)$ and covering codes of radius 3, codimension 4, under a certain probabilistic conjecture, Computational Science and Its Applications - ICCSA 2020, Lecture Notes in Computer Science, Springer, Cham, 12249 (2020), 107-122.  doi: 10.1007/978-3-030-58799-4_8.
    [17] A. A. DavydovS. Marcugini and F. Pambianco, Upper bounds on the length function for covering codes with covering radius $R$ and codimension $tR+1$, Adv. Math. Commun., 17 (2023), 98-118.  doi: 10.3934/amc.2021074.
    [18] A. A. Davydov and P. R. J. Östergård, Linear codes with covering radius $R = 2, 3$ and codimension $tR$, IEEE Trans. Inform. Theory, 47 (2001), 416-421.  doi: 10.1109/18.904551.
    [19] A. A. Davydov and P. R. J. Östergård, Linear codes with covering radius 3, Des. Codes Cryptogr., 54 (2010), 253-271.  doi: 10.1007/s10623-009-9322-y.
    [20] L. Denaux, Constructing saturating sets in projective spaces using subgeometries, Des. Codes Cryptogr., 90 (2022), 2113-2144.  doi: 10.1007/s10623-021-00951-y.
    [21] L. Denaux, Higgledy-piggledy sets in projective spaces of small dimension, Electron. J. Combin., 29 (2022), 25 pp. doi: 10.37236/10736.
    [22] T. Etzion and L. Storme, Galois geometries and coding theory, Des. Codes Cryptogr., 78 (2016), 311-350.  doi: 10.1007/s10623-015-0156-5.
    [23] M. Giulietti, The geometry of covering codes: Small complete caps and saturating sets in Galois spaces, Surveys in Combinatorics 2013, London Math. Soc., Lecture Note Series, Cambridge University Press, Cambridge, 409 (2013), 51-90.  doi: 10.1017/CBO9781139506748.003.
    [24] T. Héger and Z. L. Nagy, Short minimal codes and covering codes via strong blocking sets in projective spaces, IEEE Trans. Inform. Theory, 68 (2022), 881-890.  doi: 10.1109/TIT.2021.3123730.
    [25] J. W. P. HirschfeldFinite Projective Spaces of Three Dimensions, Oxford Univ. Press, Oxford, 1985. 
    [26] J. W. P. HirschfeldProjective Geometries over Finite Fields, 2$^{nd}$ edition, Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1998. 
    [27] J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces: Update 2001, Finite Geometries, Develop. Math., Kluwer, Dordrecht, 3 (2001), 201-246.  doi: 10.1007/978-1-4613-0283-4_13.
    [28] W. C. Huffman and  V. S. PlessFundamentals of Error-Correcting Codes, Cambridge Univ. Press, 2003.  doi: 10.1017/CBO9780511807077.
    [29] A. Jeffrey and  H. H. DaiHandbook of Mathematical Formulas and Integrals, 4$^{th}$ edition, Elsevier, Academic Press, Amsterdam, 2008. 
    [30] I. Landjev and L. Storme, Galois geometry and coding theory, Current Research Topics in Galois geometry, Chapter 8, NOVA Academic, New York, (2011), 187-214.
    [31] A. Lobstein, Covering radius, an online bibliography, (2023), Available from: https://www.lri.fr/lobstein/bib-a-jour.pdf.
    [32] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, 3$^{rd}$ edition, North-Holland, Amsterdam, The Netherlands, 1981.
    [33] Z. L. Nagy, Saturating sets in projective planes and hypergraph covers, Discrete Math., 341 (2018), 1078-1083.  doi: 10.1016/j.disc.2018.01.011.
    [34] A. Sonnino, Transitive $PSL(2, 7)$-invariant 42-arcs in 3-dimensional projective spaces, Des. Codes Cryptogr., 72 (2014), 455-463.  doi: 10.1007/s10623-012-9778-z.
    [35] R. Struik, Covering Codes, Ph.D thesis, Eindhoven University of Technology, The Netherlands, 1994.
  • 加载中

Figures(3)

Tables(1)

SHARE

Article Metrics

HTML views(2025) PDF downloads(646) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return