\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The MacWilliams identity for the skew rank metric

  • *Corresponding author: Maximilien Gadouleau

    *Corresponding author: Maximilien Gadouleau
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • The weight distribution of an error correcting code is a crucial statistic in determining its performance. One key tool for relating the weight of a code to that of it's dual is the MacWilliams Identity, first developed for the Hamming metric. This identity has two forms: one is a functional transformation of the weight enumerators, while the other is a direct relation of the weight distributions via (generalised) Krawtchouk polynomials. The functional transformation form can in particular be used to derive important moment identities for the weight distribution of codes. In this paper, we focus on codes in the skew rank metric. In these codes, the codewords are skew-symmetric matrices, and the distance between two matrices is the skew rank metric, which is half the rank of their difference. This paper develops a $ q $-analog MacWilliams Identity in the form of a functional transformation for codes based on skew-symmetric matrices under their associated skew rank metric. The method introduces a skew-$ q $ algebra and uses generalised Krawtchouk polynomials. Based on this new MacWilliams Identity, we then derive several moments of the skew rank distribution for these codes.

    Mathematics Subject Classification: Primary: 94B05, 15B33; Secondary: 20H30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. A. Albert, Symmetric and alternate matrices in an arbitrary field, Ⅰ, Transactions of the American Mathematical Society, 43 (1938), 386-436.  doi: 10.2307/1990068.
    [2] G. E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976.
    [3] L. Carlitz, Representations by skew forms in a finite field, Archiv der Mathematik, 5 (1954), 19-31.  doi: 10.1007/BF01899314.
    [4] J. Conway and N. Sloane, Sphere Packings, Lattices and Groups, Springer New York, NY, Jan. 1988. doi: 10.1007/978-1-4757-2016-7.
    [5] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl., 1973 (1973), vi+97 pp.
    [6] P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, Journal of Combinatorial Theory, Series A, 25 (1978), 226-241.  doi: 10.1016/0097-3165(78)90015-8.
    [7] P. Delsarte, Properties and applications of the recurrence $F(i + 1, k + 1, n + 1) = q^{k+1} F(i, k + 1, n) - q^k F(i, k, n)$, SIAM Journal on Applied Mathematics, 31 (1976), 262-270.  doi: 10.1137/0131021.
    [8] P. Delsarte and J. M. Goethals., Alternating bilinear forms over GF$(q)$, Journal of Combinatorial Theory, Series A, 19 (1975), 26-50.  doi: 10.1016/0097-3165(75)90090-4.
    [9] I. Friedlander, The MacWilliams Identity for Krawtchouk Association Schemes, Ph.D thesis, Durham University, submitted, 2023.
    [10] E. M. Gabidulin, Theory of codes with maximum rank distance, Problemy Peredachi Informatsii, 21 (1985), 3-16. 
    [11] M. Gadouleau and Z. Yan, MacWilliams identity for codes with the rank metric, EURASIP journal on Wireless Communications and Networking, 2008 (2008).
    [12] A. M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities, Congrès International de Mathématiques, 3 (1970), 211-215. 
    [13] R. W. Hamming, Error detecting and error correcting codes, Bell System Technical Journal, 29 (1950), 147-160.  doi: 10.1002/j.1538-7305.1950.tb00463.x.
    [14] F. J. MacWilliams, A theorem on the distribution of weights in a systematic code, Bell System Technical Journal, 42 (1963), 79-94.  doi: 10.1002/j.1538-7305.1963.tb04003.x.
    [15] F. J. MacWilliams, Orthogonal matrices over finite fields, The American Mathematical Monthly, 76 (1969), 152-164.  doi: 10.1080/00029890.1969.12000160.
    [16] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
    [17] R. J. McEliece, A public-key cryptosystem based on algebraic coding theory, Deep Space Network Progress Report, 44 (1978), 114-116. 
    [18] R. M. Roth, Maximum-rank array codes and their application to crisscross error correction, IEEE Transactions on Information Theory, 37 (1991), 328-336.  doi: 10.1109/18.75248.
    [19] D. SilvaF. R. Kschischang and R. Koetter, A rank-metric approach to error control in random network coding, IEEE Transactions on Information Theory, 54 (2008), 3951-3967.  doi: 10.1109/TIT.2008.928291.
    [20] D. Stanton, Some q-Krawtchouk polynomials on Chevalley groups, American Journal of Mathematics, 102 (1980), 625-662.  doi: 10.2307/2374091.
    [21] V. TarokhN. Seshadri and A. R. Calderbank, Space-time codes for high data rate wireless communication: Performance criterion and code construction, IEEE Transactions on Information Theory, 44 (1998), 744-765.  doi: 10.1109/18.661517.
    [22] Denso Wave, QR Code® Development Story, available from: https://www.denso-wave.com/en/technology/vol1.html
  • 加载中
SHARE

Article Metrics

HTML views(1870) PDF downloads(644) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return