[1]
|
C. Carlet, P. Méaux and Y. Rotella, Boolean functions with restricted input and their robustness; application to the FLIP cipher, IACR Trans. Symmetric Cryptol., 2017 (2017), 192-227.
doi: 10.13154/TOSC.V2017.I3.192-227.
|
[2]
|
D. K. Dalai, K. C. Gupta and S. Maitra, Results on algebraic immunity for cryptographically significant Boolean functions, In Progress in Cryptology - INDOCRYPT 2004, 3348 (2004), 92-106.
doi: 10.1007/978-3-540-30556-9_9.
|
[3]
|
S. Duval, V. Lallemand and Y. Rotella, Cryptanalysis of the FLIP family of stream ciphers, In Advances in Cryptology - CRYPTO 2016, 9814 (2016), 457-475.
doi: 10.1007/978-3-662-53018-4_17.
|
[4]
|
A. Gini and P. Méaux, On the weightwise nonlinearity of weightwise perfectly balanced functions, Discrete Applied Mathematics, 322 (2022), 320-341.
doi: 10.1016/J.DAM.2022.08.017.
|
[5]
|
A. Gini and P. Méaux, Weightwise almost perfectly balanced functions: Secondary constructions for all n and better weightwise nonlinearities, In Progress in Cryptology - INDOCRYPT 2022, 13774 (2022), 492-514.
doi: 10.1007/978-3-031-22912-1_22.
|
[6]
|
A. Gini and P. Méaux, On the algebraic immunity of weightwise perfectly balanced functions, In Progress in Cryptology - LATINCRYPT 2023, 14168 (2023), 3-23.
doi: 10.1007/978-3-031-44469-2_1.
|
[7]
|
A. Gini and P. Méaux, Weightwise perfectly balanced functions and nonlinearity, In Codes, Cryptology and Information Security - C2SI 2023, 13874 (2023), 338-359.
doi: 10.1007/978-3-031-33017-9_21.
|
[8]
|
H. W. Gould, Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial Coefficient Summations, Gould, 1972.
|
[9]
|
X. Guo and S. Su, Construction of weightwise almost perfectly balanced Boolean functions on an arbitrary number of variables, Discrete Applied Mathematics, 307 (2022), 102-114.
doi: 10.1016/J.DAM.2021.10.011.
|
[10]
|
X.-D. Hou, On the norm and covering radius of the first-order Reed-Muller codes, IEEE Transactions on Information Theory, 43 (1997), 1025-1027.
doi: 10.1109/18.568715.
|
[11]
|
J. Li and S. Su, Construction of weightwise perfectly balanced Boolean functions with high weightwise nonlinearity, Discrete Applied Mathematics, 279 (2020), 218-227.
doi: 10.1016/j.dam.2020.01.020.
|
[12]
|
J. Liu and S. Mesnager, Weightwise perfectly balanced functions with high weightwise nonlinearity profile, Designs, Codes and Cryptography, 87 (2019), 1797-1813.
doi: 10.1007/S10623-018-0579-X.
|
[13]
|
É. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques suivant un module premier, Bull. Soc. Math. France, 6 (1878), 49-54.
doi: 10.24033/bsmf.127.
|
[14]
|
P. Méaux, A. Journault, F.-X. Standaert and C. Carlet, Towards stream ciphers for efficient FHE with low-noise ciphertexts, In Advances in Cryptology - EUROCRYPT 2016, 9665 (2016), 311-343.
doi: 10.1007/978-3-662-49890-3_13.
|
[15]
|
W. Meier, E. Pasalic and C. Carlet, Algebraic attacks and decomposition of boolean functions, In Advances in Cryptology - EUROCRYPT 2004, 3027 (2004), 474-491.
doi: 10.1007/978-3-540-24676-3_28.
|
[16]
|
S. Mesnager and S. Su, On constructions of weightwise perfectly balanced Boolean functions, Cryptography and Communications, 13 (2021), 951-979.
doi: 10.1007/S12095-021-00481-3.
|
[17]
|
S. Mesnager, S. Su and J. Li, On concrete constructions of weightwise perfectly balanced functions with optimal algebraic immunity and high weightwise nonlinearity, In The 6th International Workshop on Boolean Functions and Applications, 2021.
|
[18]
|
S. Mesnager, Z. Zhou and C. Ding, On the nonlinearity of Boolean functions with restricted input, Cryptography and Communications, 11 (2019), 63-76.
doi: 10.1007/s12095-018-0293-6.
|
[19]
|
S. Su, The lower bound of the weightwise nonlinearity profile of a class of weightwise perfectly balanced functions, Discrete Applied Mathematics, 297 (2021), 60-70.
doi: 10.1016/J.DAM.2021.02.033.
|
[20]
|
D. Tang and J. Liu, A family of weightwise (almost) perfectly balanced Boolean functions with optimal algebraic immunity, Cryptography and Communications, 11 (2019), 1185-1197.
doi: 10.1007/s12095-019-00374-6.
|
[21]
|
R. Zhang and S. Su, A new construction of weightwise perfectly balanced Boolean functions, Advances in Mathematics of Communications, 17 (2023), 757-770.
|
[22]
|
L. Zhu and S. Su, A systematic method of constructing weightwise almost perfectly balanced Boolean functions on an arbitrary number of variables, Discrete Applied Mathematics, 314 (2022), 181-190.
doi: 10.1016/j.dam.2022.02.017.
|