[1]
|
A. Alahmadi, S. Dougherty, A. Leroy and P. Solé, On the duality and the direction of polycyclic codes, Adv. Math. Commun., 10 (2016), 921-929.
doi: 10.3934/amc.2016049.
|
[2]
|
N. Aydin, T. H. Guidotti, P. Liu, A. S. Shaikh and R. O. VandenBerg, Some generalizations of the ASR search algorithm for quasitwisted codes, Involve, J. Math., 13 (2020), 137-148.
doi: 10.2140/involve.2020.13.137.
|
[3]
|
N. Aydin, T. Guidotti and P. Liu, Good classical and quantum codes from multi-twisted codes, Algebra and Coding Theory, Contemp. Math., American Mathematical Society, 785 (2023), 7-21.
doi: 10.1090/conm/785/15771.
|
[4]
|
N. Aydin, P. Liu and B. Yoshino, Polycyclic codes associated with trinomials: Good codes and open questions, Des. Codes Cryptogr., 90 (2022), 1241-1269.
doi: 10.1007/s10623-022-01038-y.
|
[5]
|
N. Aydin, I. Siap and D. K. Ray-Chaudhuri, The structure of 1-generator quasi-twisted codes and new linear codes, Des. Codes Cryptogr., 24 (2001), 313-326.
doi: 10.1023/A:1011283523000.
|
[6]
|
N. Aydin, Some new linear codes from skew cyclic codes and computer algebra challenges, Appl. Algebra Eng. Commun. Comput., 30 (2019), 185-191.
doi: 10.1007/s00200-019-00383-1.
|
[7]
|
N. Aydin and A. Halilović, A generalization of quasi-twisted codes: Multi-twisted codes, Finite Fields Appl., 45 (2017), 96-106.
doi: 10.1016/j.ffa.2016.12.002.
|
[8]
|
N. Aydin, P. Liu and B. Yoshino, A database of quantum codes, (2021), http://quantumcodes.info/.
|
[9]
|
B. Chen, Y. Fan, L. Lin and H. Liu, Constacyclic codes over finite fields, Finite Fields Appl., 18 (2012), 1217-1231.
doi: 10.1016/j.ffa.2012.10.001.
|
[10]
|
A. R. Calderbank and P. W. Shor, Good quantum error-correcting codes exist, Physical Review, 54 (1996), 1098.
doi: 10.1103/PhysRevA.54.1098.
|
[11]
|
A. R. Calderbank, E. M. Rains, P. M. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Transactions on Information Theory, 44 (1998), 1369-1387.
doi: 10.1109/18.681315.
|
[12]
|
E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill Book Company, New York, 1968.
|
[13]
|
J. Bierbrauer and Y. Edel, Some good quantum twisted codes, (2020), https://www.mathi.uni-heidelberg.de/yves/Matritzen/QTBCH/QTBCHIndex.html.
|
[14]
|
D. Boucher and F. Ulmer, Coding with skew polynomial rings, Journal of Symbolic Computation, 44 (2009), 1644-1656.
doi: 10.1016/j.jsc.2007.11.008.
|
[15]
|
M. Esmaeili and S. Yari, Generalized quasi-cyclic codes: structural properties and code construction, Applicable Algebra in Engineering Communication and Computing, 20 (2009), 159-173.
doi: 10.1007/s00200-009-0095-3.
|
[16]
|
M. I. García-Planas, M. D. Magret and L. E. Um, Monomial codes seen as invariant subspaces, Open Mathematics, 15 (2017), 1099-1107.
doi: 10.1515/math-2017-0093.
|
[17]
|
M. Grassl, Code Tables: Bounds on the parameters of codes, [online server], http://www.codetables.de/.
|
[18]
|
C. R. P. Hartmannn and K. K. Tzeng, Generalizations of the BCH-bound, Information and Control, 20 (1972), 489-498.
doi: 10.1016/S0019-9958(72)90887-X.
|
[19]
|
H. K. Hoffman and R. Kunze, Linear Algebra, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1971.
|
[20]
|
W. C. Huffuman and V. Pless, Fundermentals of Error Correcting Codes, Cambridge University Press, 2003.
doi: 10.1017/CBO9780511807077.
|
[21]
|
A. Kleppner, The cyclic decomposition theorem, Integral Equations and endomorphism Theory, 25 (1996), 490-495.
doi: 10.1007/BF01203029.
|
[22]
|
S. Li, M. Xiong and G. Ge, Pseudo-cyclic codes and the construction of quantum MDS code, IEEE Trans. Inf. Theory, 62 (2016), 1703-1710.
doi: 10.1109/TIT.2016.2535180.
|
[23]
|
R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge University Press, Cambridge, 1986.
|
[24]
|
S. Ling and P. Sole, On the algebraic structure of quasi-cyclic codes Ⅰ: Finite fields, IEEE Transactions on Information Theory, 47 (2001), 2751-2760.
doi: 10.1109/18.959257.
|
[25]
|
S. R. Lopez-Permouth, B. R. Parra-Avila and S. Szabo, Dual generalizations of the concept of cyclicity of codes, Advances in Mathematics of Communications, 3 (2009), 227-234.
doi: 10.3934/amc.2009.3.227.
|
[26]
|
Magma computer algebra system, online, (2022), http://magma.maths.usyd.edu.au/.
|
[27]
|
H. Ou-azzou and M. Najmeddine, On the algebraic structure of polycyclic codes, Filomat, 35 (2021), 3407-3421.
doi: 10.2298/FIL2110407O.
|
[28]
|
Oystein Ore, Theory of monomial groups, Transactions of the American Mathematical Society, 51 (1942), 15-64.
doi: 10.1090/S0002-9947-1942-0005739-6.
|
[29]
|
E. Prange, Cyclic Error-correcting Codes in Two Symbols, Air Force Cambridge Research Center, 1957.
|
[30]
|
D. Radkova and A. J. Van Zanten, Constacyclic codes as invariant subspaces, Linear Algebra and its Applications, 430 (2009), 855-864.
doi: 10.1016/j.laa.2008.09.036.
|
[31]
|
C. Roos, A generalization of the BCH bound for cyclic codes including the Hartmannn-Tzeng bound, Journal of Combinatorial Theory, Serie A, 33 (1982), 229-232.
doi: 10.1016/0097-3165(82)90014-0.
|
[32]
|
I. Siap and N. Kulhan, The structure of generalized quasi-cyclic codes, Applied Mathematics E-Notes, 5 (2005), 24-30.
|
[33]
|
M. Shi, X. Li, Z. Sepasdar and P. Sole, Polycyclic codes as invariant subspaces, Finite Fields Their Applications, 68 (2020), 101760, 14 pp.
doi: 10.1016/j.ffa.2020.101760.
|
[34]
|
M. Shi, L. Xu and P. Solé, Construction of isodual codes from polycirculant matrices, Designs, Codes and Cryptography, 88 (2020), 2547-2560.
doi: 10.1007/s10623-020-00799-8.
|
[35]
|
M. Shi and Y. Zhang, Quasi-twisted codes with constacyclic constituent codes, Finite Fields and Their Applications, 39 (2016), 159-178.
doi: 10.1016/j.ffa.2016.01.010.
|
[36]
|
A. M. Steane, Error-correcting codes in quantum theory, Physical Review Letters, 77 (1996), 793-797.
doi: 10.1103/PhysRevLett.77.793.
|
[37]
|
SageMath, the Sage Mathematics Software System (Version 8.7), The Sage Developers, 2019, https://www.sagemath.org.
|
[38]
|
E. G. Séguin, The algebraic structure of codes invariant by a permutation, Information Theory and Applications II, 1133 (1996), 1-18.
doi: 10.1007/BFb0025131.
|