\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A deep neural network for a hemiarray EIT system

  • *Corresponding author: Malena I. Español

    *Corresponding author: Malena I. Español
Abstract Full Text(HTML) Figure(10) Related Papers Cited by
  • Electrical Impedance Tomography (EIT) can map electrical property distributions within the body using a surface electrode array. EIT systems using a circumferential array applied to the abdomen can be used to monitor acute intra-abdominal hemorrhages in trauma patients. Nevertheless, these patients may also have suffered spinal injuries that might be exacerbated by lifting the patient to place the array. Thus, a half array ('hemiarray') applied only to the anterior abdomen may be more practical. However, severe reconstruction artifacts result in posterior regions using standard EIT reconstruction methods. This study proposes a novel machine learning-based approach for standard full and hemiarray EIT reconstructions, demonstrating superior reconstruction characteristics compared to conventional methods. Notably, our method mitigates the challenges of reconstructing anomalies in posterior regions. This performance advantage was consistently observed across reconstructions from simulated and real tank data. Based on our findings, we conclude that the machine learning-based hemiarray reconstruction method holds significant promise for challenging imaging scenarios, particularly when access to the anterior or posterior abdomen is restricted.

    Mathematics Subject Classification: Primary: 92C55, 68T07, 65N21; Secondary: 65R32.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The electrode layout for the fullarray and hemiarray configurations and the EIDORS "c2C" mesh with 576 triangular elements used for the training. Notice that in this particular hemiarray arrangement, the electrodes cover less than half of the circumference

    Figure 2.  (a) Voltage gathering process of the fullarray EIT system by injecting adjacent electrodes with current, producing 208 boundary voltage measurements. (b) FA-DNN architecture that uses boundary voltage measurements to reconstruct a discretized internal conductivity distribution

    Figure 3.  (a) Voltage gathering process of the hemiarray EIT system. The boundary voltage measurements are collected using the adjacent current injection pattern; in the hemiarray, electrodes 1 and 8 are adjacent, producing 40 boundary voltage measurements. (b) The HA-DNN architecture, except for its input layer, shared the same architecture as the FA-DNN. The hemiarray input layer was not a perfect subset of the fullarray, as it contained the connection between electrodes 1 and 8 that was not present in the fullarray. The diagram highlights some of the unique connections of the hemiarray in green

    Figure 4.  Results of full- and hemiarray reconstructions of simulated data. The first column shows the true internal conductivity. The second, third, and fourth columns show the reconstructions produced by Tikhonov (TK), TSVD, and the FA-DNN, respectively, using the fullarray configuration. Further, the fifth, sixth, and seventh columns show reconstructions produced by TK, TSVD, and the HA-DNN, respectively, using the hemiarray configuration

    Figure 5.  Average values of each figure of merit for reconstructing small conductive anomalies. Bold lines indicate the mean value of each figure of merit for all radial positions at a given angle. Shaded regions show two standard errors (one-fifth standard deviation) above and below the mean value, indicating the models' robustness to changes in anomaly radial positions. QI subplots have a black dashed line representing the normalized true QI at each angle. QI values are averages over the entire mesh in units of S/m

    Figure 6.  HA-DNN reconstructions of internal conductivity based on actual voltage measurements from a hemiarray EIT system, with the true placement of cylindrical anomalies superimposed. The graphic also includes a picture of the "phantom tank, " i.e., the EIT device utilized to collect the data, and a depiction of anomaly placement within the elliptical domain (major/minor axis ratio of 30 cm/26 cm). The top two rows depict metal anomalies, and the lower two rows depict plastic anomalies

    Figure 7.  GREIT figure of merit metrics for DNN reconstructions from real tank data on a disk. The left figure corresponds to metal anomaly measures, and the right-hand side shows plastic anomaly values. QI values are averages over entire mesh in S/m

    Figure 8.  Results of full- and hemiarray reconstructions of simulated data using an elliptical domain. The first column shows the true internal conductivity. The second, third, and fourth columns show the reconstructions produced by Tikhonov (TK), TSVD, and the FA-DNN, respectively, using the fullarray configuration. Further, the fifth, sixth, and seventh columns show reconstructions produced by TK, TSVD, and the HA-DNN, respectively, using the hemiarray configuration

    Figure 9.  Hemiarray reconstructions of internal conductivity based on phantom data, with the true placement of cylindrical anomalies superimposed. The graphic also includes a picture of the "phantom tank, " i.e., the EIT device utilized to collect the data, and a depiction of anomaly placement within the elliptical boundary (major/minor axis ratio of 30 cm/26 cm). The top two rows of the figure depict metal anomalies, while the bottom two rows depict plastic anomalies

    Figure 10.  QI expressed as average conductivity over mesh for reconstructions on an elliptical domain for each anomaly type

  • [1] A. Adler, J. H. Arnold, R. Bayford, A. Borsic, B. Brown, P. Dixon, T. J. C. Faes, I. Frerichs, H. Gagnon, Y. Gärber, et al., GREIT: A unified approach to 2D linear EIT reconstruction of lung images, Physiological Measurement, 30 (2009), S35. doi: 10.1088/0967-3334/30/6/S03.
    [2] A. Adler and  D. HolderElectrical Impedance Tomography: Methods, History and Applications, CRC Press, 2021.  doi: 10.1201/9780429399886.
    [3] A. Adler and W. R. B. Lionheart, Uses and abuses of EIDORS: An extensible software base for EIT, Physiological Measurement, 27 (2006), S25. doi: 10.1088/0967-3334/27/5/S03.
    [4] A. BianchessiR. H. AkamineG. C. DuranN. TanabiA. K. SatoT. C. Martins and M. S. G. Tsuzuki, Electrical impedance tomography image reconstruction based on neural networks, IFAC-PapersOnLine, 53 (2020), 15946-15951.  doi: 10.1016/j.ifacol.2020.12.360.
    [5] B. BrazeyY. Haddab and N. Zemiti, Robust imaging using electrical impedance tomography: Review of current tools, Proceedings of the Royal Society A, 478 (2022), 20210713.  doi: 10.1098/rspa.2021.0713.
    [6] B. H. Brown, Electrical impedance tomography (EIT): A review, Journal of Medical Engineering & Technology, 27 (2003), 97-108.  doi: 10.1080/0309190021000059687.
    [7] M. Capps and J. L. Mueller, Reconstruction of organ boundaries with deep learning in the D-bar method for electrical impedance tomography, IEEE Transactions on Biomedical Engineering, 68 (2020), 826-833. 
    [8] K.-S. ChengD. IsaacsonJ. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Transactions on Biomedical Engineering, 36 (1989), 918-924. 
    [9] A. Coxson, I. Mihov, Z. Wang, V. Avramov, F. B. Barnes, S. Slizovskiy, C. Mullan, I. Timokhin, D. Sanderson, A. Kretinin, et al., Machine learning enhanced electrical impedance tomography for 2D materials, Inverse Problems, 38 (2022), 085007, 27 pp. doi: 10.1088/1361-6420/ac7743.
    [10] R. P. DuttonC. F. Mackenzie and T. M. Scalea, Hypotensive resuscitation during active hemorrhage: Impact on in-hospital mortality, Journal of Trauma and Acute Care Surgery, 52 (2002), 1141-1146.  doi: 10.1097/00005373-200206000-00020.
    [11] Y. Fan and L. Ying, Solving electrical impedance tomography with deep learning, Journal of Computational Physics, 404 (2020), 109119, 19 pp. doi: 10.1016/j.jcp.2019.109119.
    [12] X. Fernández-FuentesD. MeraA. Gómez and I. Vidal-Franco, Towards a fast and accurate EIT inverse problem solver: A machine learning approach, Electronics, 7 (2018), 422. 
    [13] I. Frerichs, Electrical impedance tomography (EIT) in applications related to lung and ventilation: A review of experimental and clinical activities, Physiological Measurement, 21 (2000), R1. doi: 10.1088/0967-3334/21/2/201.
    [14] B. A. Gaines, Intra-abdominal solid organ injury in children: Diagnosis and treatment, Journal of Trauma and Acute Care Surgery, 67 (2009), S135-S139. doi: 10.1097/TA.0b013e3181adc17a.
    [15] Y. Gao, Y. Lu, H. Li, B. Liu, Y. Li, M. Chen, G. Wang and Y. Lian, EIT-CDAE: A 2-D electrical impedance tomography image reconstruction method based on auto encoder technique, in 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), (2019), 1-4. doi: 10.1109/BIOCAS.2019.8918979.
    [16] I. GoodfellowY. Bengio and  A. CourvilleDeep Learning, MIT press, 2016. 
    [17] S. J. Hamilton and A. Hauptmann, Deep D-bar: Real-time electrical impedance tomography imaging with deep neural networks, IEEE Transactions on Medical Imaging, 37 (2018), 2367-2377.  doi: 10.1109/TMI.2018.2828303.
    [18] G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 313 (2006), 504-507.  doi: 10.1126/science.1127647.
    [19] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint, arXiv: 1412.6980, 2014.
    [20] F. Li, C. Tan and F. Dong, Electrical resistance tomography image reconstruction with densely connected convolutional neural network, IEEE Transactions on Instrumentation and Measurement, $\texttt{70}$ (2021), 1-11. doi: 10.1109/TIM.2020.3013056.
    [21] X. Li, Y. Lu, J. Wang, X. Dang, Q. Wang, X. Duan and Y. Sun, An image reconstruction framework based on deep neural network for electrical impedance tomography, in 2017 IEEE International Conference on Image Processing (ICIP), (2017), 3585-3589. doi: 10.1109/ICIP.2017.8296950.
    [22] X. LiY. ZhouJ. WangQ. WangY. LuX. DuanY. SunJ. Zhang and Z. Liu, A novel deep neural network method for electrical impedance tomography, Transactions of the Institute of Measurement and Control, 41 (2019), 4035-4049.  doi: 10.1177/0142331219845037.
    [23] D. Liu, J. Wang, Q. Shan, D. Smyl, J. Deng and J. Du, DeepEIT: Deep image prior enabled electrical impedance tomography, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
    [24] M. Michalikova, R. Abed, M. Prauzek and J. Koziorek, Image reconstruction in electrical impedance tomography using neural network, in 2014 Cairo International Biomedical Engineering Conference (CIBEC), (2014), 39-42. doi: 10.1109/CIBEC.2014.7020959.
    [25] J. L. Mueller and S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications, SIAM, 2012. doi: 10.1137/1.9781611972344.
    [26] T. I. OhH. WiD. Y. KimP. J. Yoo and E. J. Woo, A fully parallel multi-frequency EIT system with flexible electrode configuration: KHU Mark2, Physiological Measurement, 32 (2011), 835.  doi: 10.1088/0967-3334/32/7/S08.
    [27] A. Quarteroni, Numerical Models for Differential Problems, Springer, Volume 2, 2009. doi: 10.1007/978-88-470-1071-0.
    [28] M. RapinF. BraunA. AdlerJ. WackerI. FrerichsB. Vogt and O. Chetelat, Wearable sensors for frequency-multiplexed EIT and multilead ECG data acquisition, IEEE Transactions on Biomedical Engineering, 66 (2018), 810-820.  doi: 10.1109/TBME.2018.2857199.
    [29] T. RymarczykG. KłosowskiE. Kozłowski and P. Tchórzewski, Comparison of selected machine learning algorithms for industrial electrical tomography, Sensors, 19 (2019), 1521.  doi: 10.3390/s19071521.
    [30] R. J. Sadleir and R. A. Fox, Detection and quantification of intraperitoneal fluid using electrical impedance tomography, IEEE Transactions on Biomedical Engineering, 48 (2001), 484-491.  doi: 10.1109/10.915715.
    [31] R. J. SadleirS. U. ZhangA. S. Tucker and S. Oh, Imaging and quantification of anomaly volume using an eight-electrode 'hemiarray' EIT reconstruction method, Physiological Measurement, 29 (2008), 913.  doi: 10.1088/0967-3334/29/8/005.
    [32] C. TanS. LvF. Dong and M. Takei, Image reconstruction based on convolutional neural network for electrical resistance tomography, IEEE Sensors Journal, 19 (2019), 196-204.  doi: 10.1109/JSEN.2018.2876411.
    [33] A. S. TuckerE. RossJ. Paugh-Miller and R. J. Sadleir, In-vivo detection of bleeding simulated in a Peritoneal dialysis model using a hemiarray EIT configuration, Journal of Physics: Conference Series, 224 (2010), 012063.  doi: 10.1088/1742-6596/224/1/012063.
    [34] A. S. TuckerE. A. RossJ. Paugh-Miller and R. J. Sadleir, In vivo quantification of accumulating abdominal fluid using an electrical impedance tomography hemiarray, Physiological Measurement, 32 (2010), 151. 
    [35] P. VincentH. LarochelleI. LajoieY. Bengio and P.-A. Manzagol, Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, Journal of Machine Learning Research, 11 (2010), 3371-3408. 
    [36] C. WangJ. Lang and H.-X. Wang, RBF neural network image reconstruction for electrical impedance tomography, Proceedings of 2004 International Conference on Machine Learning and Cybernetics, 4 (2004), 2549-2552. 
    [37] P. Wang, H.-L. Li, L.-L. Xie and Y.-C. Sun, The implementation of FEM and RBF neural network in EIT, in 2009 Second International Conference on Intelligent Networks and Intelligent Systems, (2009), 66-69. doi: 10.1109/ICINIS.2009.26.
    [38] P. J. Werbos, Backpropagation through time: What it does and how to do it, Proceedings of the IEEE, 78 (1990), 1550-1560.  doi: 10.1109/5.58337.
    [39] T. ZhangX. TianX. LiuJ. YeF. FuX. ShiR. Liu and C. Xu, Advances of deep learning in electrical impedance tomography image reconstruction, Frontiers in Bioengineering and Biotechnology, 10 (2022), 1019531.  doi: 10.3389/fbioe.2022.1019531.
  • 加载中

Figures(10)

SHARE

Article Metrics

HTML views(1298) PDF downloads(100) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return