[1]
|
G. H. Aranda-Bojorges, B. P. Garcia-Salgado, V. I. Ponomaryov, O. Lopez-García and R. Reyes-Reyes, Despeckling of SAR images using GPU based on 3D-MAP estimation, Real-Time Image Processing and Deep Learning, 12102 (2022), 181-192.
|
[2]
|
C. D. Austin, E. Ertin and R. L. Moses, Sparse multipass 3D SAR imaging: Applications to the GOTCHA data set, Algorithms for Synthetic Aperture Radar Imagery XVI, 7337 (2009), 19-30.
doi: 10.1117/12.820323.
|
[3]
|
A. H. Barnett, J. Magland and L. AF Klinteberg, A parallel nonuniform fast Fourier transform library based on an "exponential of semicircle" kernel, SIAM Journal on Scientific Computing, 41 (2019), C479-C504.
doi: 10.1137/18M120885X.
|
[4]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trend®in Machine Learning, 3 (2011), 1-122.
doi: 10.1561/2200000016.
|
[5]
|
D. Calvetti and E. Somersalo, Inverse problems: From regularization to Bayesian inference, Wiley Interdisciplinary Reviews: Computational Statistics, 10 (2018), e1427.
doi: 10.1002/wics.1427.
|
[6]
|
E. J. Candès and M. B. Wakin, An introduction to compressive sampling, IEEE Signal Processing Magazine, 25 (2008), 21-30.
doi: 10.1109/MSP.2007.914731.
|
[7]
|
L. Chen, D. An, X. Huang and Z. Zhou, A 3D reconstruction strategy of vehicle outline based on single-pass single-polarization CSAR data, IEEE Transactions on Image Processing, 26 (2017), 5545-5554.
doi: 10.1109/TIP.2017.2738566.
|
[8]
|
M. Cheney, A mathematical tutorial on synthetic aperture radar, SIAM Review, 43 (2001), 301-312.
doi: 10.1137/S0036144500368859.
|
[9]
|
M. Cheney and B. Borden, Synthetic aperture radar imaging, in Handbook of Mathematical Methods in Imaging, Springer New York, 2015,763-799.
doi: 10.1007/978-1-4939-0790-8_49.
|
[10]
|
V. Churchill, Synthetic Aperture Radar Image Formation with Uncertainty Quantification, Ph.D thesis, Dartmouth College, 2020.
|
[11]
|
V. Churchill and A. Gelb, Sampling-based spotlight SAR image reconstruction from phase history data for speckle reduction and uncertainty quantification, SIAM/ASA Journal on Uncertainty Quantification, 10 (2022), 1225-1249.
doi: 10.1137/20M1379721.
|
[12]
|
V. Churchill and A. Gelb, Sub-aperture SAR imaging with uncertainty quantification, Inverse Problems, 39 (2023), 054004.
|
[13]
|
R. E. Crochiere and L. R. Rabiner, Interpolation and decimation of digital signals-A tutorial review, Proceedings of the IEEE, 69 (1981), 300-331.
doi: 10.1109/PROC.1981.11969.
|
[14]
|
A. W. Doerry, E. E. Bishop and J. A. Miller, Basics of backprojection algorithm for processing synthetic aperture radar images, Sandia Report SAND2016-1682, Unlimited Release, (2016), 59.
|
[15]
|
M.-P. Dubuisson and A. K. Jain, A modified Hausdorff distance for object matching, Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, Israel, 1994,566-568.
|
[16]
|
J. Glaubitz, A. Gelb and G. Song, Generalized sparse Bayesian learning and application to image reconstruction, SIAM/ASA Journal on Uncertainty Quantification, 11 (2023), 262-284.
doi: 10.1137/22M147236X.
|
[17]
|
L. A. Gorham and L. J. Moore, SAR image formation toolbox for MATLAB, Algorithms for Synthetic Aperture Radar Imagery XVII, 7699 (2010), 46-58.
doi: 10.1117/12.855375.
|
[18]
|
C. V. Jakowatz, D. E. Wahl, P. H. Eichel, D. C. Ghiglia and P. A. Thompson, Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach, Springer Science & Business Media, 2012.
doi: 10.1007/978-1-4613-1333-5.
|
[19]
|
J. R. Jamora, Angular-Dependent Three-Dimensional Imaging Techniques in Multi-Pass Synthetic Aperture Radar, Master's thesis, Mississippi State University, 2021.
|
[20]
|
J. R. Jamora, D. Green, A. Talley and T. Curry, Utilizing SAR imagery in three-dimensional neural radiance fields-based applications, Algorithms for Synthetic Aperture Radar Imagery XXX, 12520 (2023), 1252002.
doi: 10.1117/12.2656870.
|
[21]
|
J. R. Jamora, P. Sotirelis, A. Nolan, J. Walrath, R. Hubbard, R. Weerasinghe, E. Young and S. Young, Multiple modality sensor fusion from synthetic aperture radar, lidar, and electro-optical systems using three-dimensional data representations, Algorithms for Synthetic Aperture Radar Imagery XXIX, 12095 (2022), 32-43.
doi: 10.1117/12.2618297.
|
[22]
|
S. Ji, Y. Xue and L. Carin, Bayesian compressive sensing, IEEE Transactions on Signal Processing, 56 (2008), 2346-2356.
doi: 10.1109/TSP.2007.914345.
|
[23]
|
T. Li and L. Du, Target discrimination for SAR ATR based on scattering center feature and K-center one-class classification, IEEE Sensors Journal, 18 (2018), 2453-2461.
doi: 10.1109/JSEN.2018.2791947.
|
[24]
|
H. Mao, Q. Yu and T. Zhang, Matching SAR image to optical image using modified Hausdorff distance and genetic algorithms, MIPPR 2007: Pattern Recognition and Computer Vision, SPIE, 6788 (2007), 532-537.
doi: 10.1117/12.750623.
|
[25]
|
D. C. Munson, J. D. O'Brien and W. K. Jenkins, A tomographic formulation of spotlight-mode synthetic aperture radar, Proceedings of the IEEE, 71 (1983), 917-925.
doi: 10.1109/PROC.1983.12698.
|
[26]
|
R. Ng, Fourier slice photography, ACM SIGGRAPH 2005 Papers, (2005), 735-744.
doi: 10.1145/1186822.1073256.
|
[27]
|
J.-C. Ni, Q. Zhang, Y. Luo and L. Sun, Compressed sensing SAR imaging based on centralized sparse representation, IEEE Sensors Journal, 18 (2018), 4920-4932.
doi: 10.1109/JSEN.2018.2831921.
|
[28]
|
J.-I. Park, S.-H. Park and K.-T. Kim, New discrimination features for SAR automatic target recognition, IEEE Geoscience and Remote Sensing Letters, 10 (2012), 476-480.
doi: 10.1109/LGRS.2012.2210385.
|
[29]
|
C. R. Paulson, Utilizing Glint Phenomenology to Perform Classification of Civilian Vehicles Using Synthetic Aperture Radar, Ph.D thesis, University of Florida, 2013.
|
[30]
|
B. D. Rigling and R. L. Moses, Polar format algorithm for bistatic SAR, IEEE Transactions on Aerospace and Electronic Systems, 40 (2004), 1147-1159.
doi: 10.1109/TAES.2004.1386870.
|
[31]
|
T. Sanders, A. Gelb and R. B. Platte, Composite SAR imaging using sequential joint sparsity, Journal of Computational Physics, 338 (2017), 357-370.
doi: 10.1016/j.jcp.2017.02.071.
|
[32]
|
T. Scarnati and J. R. Jamora, Three-dimensional object reconstruction from sparse multi-pass SAR data, Algorithms for Synthetic Aperture Radar Imagery XXVIII, SPIE, 11728 (2021), 143-155.
doi: 10.1117/12.2593601.
|
[33]
|
Y. Shi, X. X. Zhu and R. Bamler, Nonlocal compressive sensing-based SAR tomography, IEEE Transactions on Geoscience and Remote Sensing, 57 (2019), 3015-3024.
doi: 10.1109/TGRS.2018.2879382.
|
[34]
|
M. E. Tipping, Sparse Bayesian learning and the relevance vector machine, Journal of Machine Learning Research, 1 (2001), 211-244.
doi: 10.1162/15324430152748236.
|
[35]
|
Y. Xiao and J. Glaubitz, Sequential image recovery using joint hierarchical Bayesian learning, Journal of Scientific Computing, 96 (2023), 4.
doi: 10.1007/s10915-023-02234-1.
|
[36]
|
J. Zhang, A. Gelb and T. Scarnati, Empirical Bayesian inference using a support informed prior, SIAM/ASA Journal on Uncertainty Quantification, 10 (2022), 745-774.
doi: 10.1137/21M140794X.
|
[37]
|
Z. Zhang, H. Lei and Z. Lv, Vehicle layover removal in circular SAR images via ROSL, IEEE Geoscience and Remote Sensing Letters, 12 (2015), 2413-2417.
doi: 10.1109/LGRS.2015.2480415.
|
[38]
|
Q. Zhao and J. C. Principe, Support vector machines for SAR automatic target recognition, IEEE Transactions on Aerospace and Electronic Systems, 37 (2001), 643-654.
doi: 10.1109/7.937475.
|