[1]
|
J. Adler, H. Kohr and O. Öktem, Operator discretization library (ODL), Zenodo, (2017).
doi: 10.5281/zenodo.249479.
|
[2]
|
J. Adler, S. Lunz, O. Verdier, C.-B. Schönlieb and O. Öktem, Task adapted reconstruction for inverse problems, Inverse Problems, 38, (2022), Paper No. 075006, 21 pp.
doi: 10.1088/1361-6420/ac28ec.
|
[3]
|
J. Adler and O. Öktem, Learned primal-dual reconstruction, IEEE Transactions on Medical Imaging, 37, (2018).
|
[4]
|
H. Andrade-Loarca, G. Kutyniok, O. Öktem and P. Petersen, Deep microlocal reconstruction for limited-angle tomography, Applied and Computational Harmonic Analysis, 59 (2022), 155-197.
doi: 10.1016/j.acha.2021.12.007.
|
[5]
|
S. R. Arridge, M. M. Betcke and L. Harhanen, Iterated preconditioned LSQR method for inverse problems on unstructured grids, Inverse Problems, 30 (2014), 075009, 27 pp.
doi: 10.1088/0266-5611/30/7/075009.
|
[6]
|
S. Arridge, P. Maass, O. Öktem and C.-B. Schönlieb, Solving inverse problems using data-driven models, Acta Numerica, 28 (2019), 1-174.
doi: 10.1017/S0962492919000059.
|
[7]
|
T. A. Bubba, G Kutyniok, M. Lassa, M. März, W. Samek, S. Siltanen and V. Srinivasan, Learning the invisible: A hybrid deep learning-shearlet framework for limited angle computed tomography, Inverse Problems, 35 (2019), 064002, 38 pp.
doi: 10.1088/1361-6420/ab10ca.
|
[8]
|
A. Chambolle and T. Pock, An introduction to continuous optimization for imaging, Actra Numerica, Cambridge University Press, 25 (2016), 161-319.
doi: 10.1017/S096249291600009X.
|
[9]
|
A. Hauptmann, J. Adler, S. Arrdige and O. Öktem, Multi-scale learned iterative reconstruction, IEEE Transactions on Computational Imaging, 6, (2020).
|
[10]
|
L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis (reprint of the 2nd edn 1990), Springer, Berlin, 2003.
doi: 10.1007/978-3-642-61497-2.
|
[11]
|
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint, arXiv: 1412.6980, (2014).
|
[12]
|
A. Meaney, F. Silva de Moura and S. Siltanen, Helsinki Tomography Challenge 2022 open tomographic dataset (HTC 2022), Zenodo, 2022.
doi: 10.5281/zenodo.6984868.
|
[13]
|
S. Mukherjee, A. Hauptmann, O. Öktem, M. Pereyra and C.-B. Schönlieb, Learned reconstruction methods with convergence guarantees: A survey of concepts and applications, IEEE Signal Processing Magazine, 40 (2023), 164-182.
doi: 10.1109/MSP.2022.3207451.
|
[14]
|
F. Natterer, The Mathematics of Computerized Tomography, SIAM, 2001.
doi: 10.1137/1.9780898719284.
|
[15]
|
E. T. Quinto, Singularities of the X-ray transform and limited data tomography in $ \mathbb{R}^2$ and $ \mathbb{R}^3$, SIAM J. Math. Anal., 24, (1993), 1215-1225.
doi: 10.1137/0524069.
|
[16]
|
O. Ronneberger, P. Fischer and T. Brox, U-net: Convolutional networks for biomedical image segmentation, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Springer, 9351 (2015), 234-241.
doi: 10.1007/978-3-319-24574-4_28.
|
[17]
|
W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. Joost Batenburg and J. Sijbers, The ASTRA toolbox: A platform for advanced algorithm development in electron tomography, Ultramicroscopy, 157 (2015), 35-47..
doi: 10.1016/j.ultramic.2015.05.002.
|
[18]
|
Y. Wu and K. He, Group normalization, Proceedings of the European Conference on Computer Vision (ECCV), (2018), 3-19.
doi: 10.1007/978-3-030-01261-8_1.
|
[19]
|
S. Xie and Z. Tu, Holistically-nested edge detection, IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, (2015), 1395-1403.
|