\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Model-based deep learning approaches to the Helsinki Tomography Challenge 2022

Abstract / Introduction Full Text(HTML) Figure(15) / Table(2) Related Papers Cited by
  • The Finnish Inverse Problems Society organized the Helsinki Tomography Challenge (HTC) in 2022 to reconstruct an image with limited-angle measurements. We participated in this challenge and developed two methods: an Edge Inpainting method and a Learned Primal-Dual (LPD) network. The Edge Inpainting method involves multiple stages, including classical reconstruction using Perona-Malik, detection of visible edges, inpainting invisible edges using a U-Net, and final segmentation using a U-Net. The LPD approach adapts the classical LPD by using large U-Nets in the primal update and replacing the adjoint with the filtered back projection (FBP). Since the challenge only provided five samples, we generated synthetic data to train the networks. The Edge Inpainting Method performed well for viewing ranges above 70 degrees, while the LPD approach performed well across all viewing ranges and ranked second overall in the challenge.

    Mathematics Subject Classification: Primary: 94A08.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  2D Fan-beam geometry used for data collection. Adapted from https://fips.fi/HTC2022.php

    Figure 2.  Examples of generated synthetic data samples. The different methods for data generation from left to right: circular holes, polygons, grid of lines, and Gaussian mixture

    Figure 3.  Visualization of the steps of the Edge Inpainting method: (1) variational reconstruction and extraction of visible edges, (2) inpainting of invisible edges, (3) segmentation

    Figure 4.  Here we compare the extracted visible edges via the variational method (middle) and the FBP (right). Both methods use the noisy sinogram on the left with 3% relative additive Gaussian noise

    Figure 5.  The official overall scores of our main methods in the challenge on the different levels in comparison with the method of the winning team. Accessed at https://www.fips.fi/HTCresults.php

    Figure 6.  The official scores of the different variants of the LPD in the challenge

    Figure 7.  Reconstructions of the Edge Inpainting method and of LPD (fine-tuned variant) in level 1 (90°)

    Figure 8.  Reconstructions of the Edge Inpainting method and of LPD (fine-tuned variant) in level 3 (70°)

    Figure 9.  Reconstructions of the Edge Inpainting method and of LPD (fine-tuned variant) in level 5 (50°)

    Figure 10.  Reconstructions of the Edge Inpainting method and of LPD (fine-tuned variant) in level 7 (30°)

    Figure 11.  Visualization of the reconstruction errors for the Edge Inpainting method and LPD (fine-tuned variant) in level 1 (90°), 3 (70°), 5 (50°), 7 (30°): white = true positive (material), black = true negative (air), red = false positive, blue = false negative

    Figure 12.  Visualization of the reconstruction errors for the LPD variants (A) fine-tuned, (B) pre-trained, (C) fine-tuned and equivariance) in level 6 (40°): white = true positive (material), black = true negative (air), red = false positive, blue = false negative

    Figure 13.  Example phantoms, which look significantly different from the challenge phantoms for testing the models on out-of-distribution data

    Figure 14.  Reconstructions and intermediate steps of the Edge Inpainting method on out-of-distribution data with angular range of 90°

    Figure 15.  Reconstructions of the LPD variants on out-of-distribution data with angular range of 80°

    Table 1.  The implementation details of the primal, dual, and segmentation network in the LPD model

    Primal U-Net $ G_{\theta_k} $ Segmentation U-Net $ T_\theta $
    scales 4 4
    channels 16, 32, 64, 64 16, 32, 64,128
    skip channels 16, 32, 32 8, 8, 8
    activation function Leaky ReLU Leaky ReLU
    downsampling max pooling max pooling
    upsampling nearest neighbor nearest neighbor
    kernel size 3 3
    Dual CNN $ F_{\theta_k} $
    number of layers 4
    channels 64
    activation function LeakyReLU
    kernel size 3
     | Show Table
    DownLoad: CSV

    Table 2.  Details of the training setup and U-Net 's architecture for the inpainting and segmentation task

    Kernel size: 9×9 Channels: 16, 32, 64,128,256,256
    Scales: 6 Skip channels: 16, 32, 64,128,256
    Parameters: $ \approx $ 34M Downsampling: max pooling
    Optimizer: Adam Upsampling: nearest neighbor
    Batch size: 4 Activation: LeakyReLU
    Loss function: weighted BCE Overall gradient steps: 16000
     | Show Table
    DownLoad: CSV
  • [1] J. Adler, H. Kohr and O. Öktem, Operator discretization library (ODL), Zenodo, (2017). doi: 10.5281/zenodo.249479.
    [2] J. Adler, S. Lunz, O. Verdier, C.-B. Schönlieb and O. Öktem, Task adapted reconstruction for inverse problems, Inverse Problems, 38, (2022), Paper No. 075006, 21 pp. doi: 10.1088/1361-6420/ac28ec.
    [3] J. Adler and O. Öktem, Learned primal-dual reconstruction, IEEE Transactions on Medical Imaging, 37, (2018).
    [4] H. Andrade-LoarcaG. KutyniokO. Öktem and P. Petersen, Deep microlocal reconstruction for limited-angle tomography, Applied and Computational Harmonic Analysis, 59 (2022), 155-197.  doi: 10.1016/j.acha.2021.12.007.
    [5] S. R. Arridge, M. M. Betcke and L. Harhanen, Iterated preconditioned LSQR method for inverse problems on unstructured grids, Inverse Problems, 30 (2014), 075009, 27 pp. doi: 10.1088/0266-5611/30/7/075009.
    [6] S. ArridgeP. MaassO. Öktem and C.-B. Schönlieb, Solving inverse problems using data-driven models, Acta Numerica, 28 (2019), 1-174.  doi: 10.1017/S0962492919000059.
    [7] T. A. Bubba, G Kutyniok, M. Lassa, M. März, W. Samek, S. Siltanen and V. Srinivasan, Learning the invisible: A hybrid deep learning-shearlet framework for limited angle computed tomography, Inverse Problems, 35 (2019), 064002, 38 pp. doi: 10.1088/1361-6420/ab10ca.
    [8] A. Chambolle and T. Pock, An introduction to continuous optimization for imaging, Actra Numerica, Cambridge University Press, 25 (2016), 161-319. doi: 10.1017/S096249291600009X.
    [9] A. Hauptmann, J. Adler, S. Arrdige and O. Öktem, Multi-scale learned iterative reconstruction, IEEE Transactions on Computational Imaging, 6, (2020).
    [10] L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis (reprint of the 2nd edn 1990), Springer, Berlin, 2003. doi: 10.1007/978-3-642-61497-2.
    [11] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint, arXiv: 1412.6980, (2014).
    [12] A. Meaney, F. Silva de Moura and S. Siltanen, Helsinki Tomography Challenge 2022 open tomographic dataset (HTC 2022), Zenodo, 2022. doi: 10.5281/zenodo.6984868.
    [13] S. MukherjeeA. HauptmannO. ÖktemM. Pereyra and C.-B. Schönlieb, Learned reconstruction methods with convergence guarantees: A survey of concepts and applications, IEEE Signal Processing Magazine, 40 (2023), 164-182.  doi: 10.1109/MSP.2022.3207451.
    [14] F. Natterer, The Mathematics of Computerized Tomography, SIAM, 2001. doi: 10.1137/1.9780898719284.
    [15] E. T. Quinto, Singularities of the X-ray transform and limited data tomography in $ \mathbb{R}^2$ and $ \mathbb{R}^3$, SIAM J. Math. Anal., 24, (1993), 1215-1225. doi: 10.1137/0524069.
    [16] O. Ronneberger, P. Fischer and T. Brox, U-net: Convolutional networks for biomedical image segmentation, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Springer, 9351 (2015), 234-241. doi: 10.1007/978-3-319-24574-4_28.
    [17] W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. Joost Batenburg and J. Sijbers, The ASTRA toolbox: A platform for advanced algorithm development in electron tomography, Ultramicroscopy, 157 (2015), 35-47.. doi: 10.1016/j.ultramic.2015.05.002.
    [18] Y. Wu and K. He, Group normalization, Proceedings of the European Conference on Computer Vision (ECCV), (2018), 3-19. doi: 10.1007/978-3-030-01261-8_1.
    [19] S. Xie and Z. Tu, Holistically-nested edge detection, IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, (2015), 1395-1403.
  • 加载中

Figures(15)

Tables(2)

SHARE

Article Metrics

HTML views(1144) PDF downloads(279) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return