[1]
|
J. Adler, H. Kohr and O. Öktem, Operator discretization library (ODL 0.7.0), January 2017, Last accessed 14, April 2023.
|
[2]
|
S. Arridge, P. Maass, O. Öktem and C.-B. Schönlieb, Solving inverse problems using data-driven models, Acta Numerica, 28 (2019), 1-174.
doi: 10.1017/S0962492919000059.
|
[3]
|
R. C. Aster, B. Borchers and C. H. Thurber, Parameter Estimation and Inverse Problems, Elsevier, Amsterdam, Netherlands, 3rd ed., 2018.
doi: 10.1016/C2015-0-02458-3.
|
[4]
|
D. O. Baguer, J. Leuschner and M. Schmidt, Computed tomography reconstruction using deep image prior and learned reconstruction methods, Inverse Problems, 36 (2020), 094004.
doi: 10.1088/1361-6420/aba415.
|
[5]
|
S. Barutcu, S. Aslan, A. K. Katsaggelos and D. Gürsoy, Limited-angle computed tomography with deep image and physics priors, Scientific Reports, 11 (2021), Article number: 17740.
doi: 10.1038/s41598-021-97226-2.
|
[6]
|
G. Beylkin, Discrete radon transform, IEEE Transactions on Acoustics, Speech, and Signal Processing, 35 (1987), 162-172.
doi: 10.1109/TASSP.1987.1165108.
|
[7]
|
M. Burger, B. Hahn and E. T. Quinto, Tomographic inverse problems: Theory and applications, Oberwolfach Reports, 16 (2020), 209-303.
doi: 10.4171/owr/2019/4.
|
[8]
|
T. Buzug, Computed Tomography: From Photon Statistics to Modern Cone-beam CT, Springer, Berlin, 2008. ISBN: 978354039408-2.
|
[9]
|
T. Chan and L. Vese, An active contour model without edges, Scale-Space Theories in Computer Vision: Second International Conference. Springer, Greece, 1682 (2002), 141-151.
doi: 10.1007/3-540-48236-9_13.
|
[10]
|
G. Chen, et al., Airnet: Fused analytical and iterative reconstruction with deep neural network regularization for sparse-data CT, Medical Physics (Lancaster), 47 (2020), 2916-2930.
doi: 10.1002/mp.14170.
|
[11]
|
M. E. Davison, The ill-conditioned nature of the limited angle tomography problem, SIAM Journal on Applied Mathematics, 43 (1983), 428-448.
doi: 10.1137/0143028.
|
[12]
|
J. T. Dobbins and H. P. McAdams, Chest tomosynthesis: Technical principles and clinical update, European Journal of Radiology, 72 (2009), 244-251.
doi: 10.1016/j.ejrad.2009.05.054.
|
[13]
|
L. A. Feldkamp, L. C. Davis and J. W. Kress, Practical cone-beam algorithm, Journal of the Optical Society of America A, 1 (1984), 612-619.
doi: 10.1364/JOSAA.1.000612.
|
[14]
|
J. Frikel and E. T. Quinto, Characterization and reduction of artifacts in limited angle tomography, Inverse Problems, 29 (2013), 125007.
doi: 10.1088/0266-5611/29/12/125007.
|
[15]
|
J. Hadamard, Sur les problèmes aux dérivés partielles et leur signification physique, Princeton University Bulletin, 13 (1902), 49-52.
|
[16]
|
U. Hampel, Image reconstruction for hard field tomography, In Industrial Tomography, Woodhead Publishing Series in Electronic and Optical Materials, Woodhead Publishing, 2015,347-376.
doi: 10.1016/B978-1-78242-118-4.00013-7.
|
[17]
|
P. Hansen, Discrete Inverse Problems: Insight and Algorithms, 1st ed., Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2010.
doi: 10.1137/1.9780898718836.
|
[18]
|
K. Hämäläinen, et al., Sparse tomography, SIAM Journal on Scientific Computing, 35 (2013), B644-665.
doi: 10.1137/120876277.
|
[19]
|
J. Hsieh, Computed Tomography, Press Monographs. SPIE Press, Bellingham, WA, 2nd ed., July 2009. ISBN: 9780819475336.
|
[20]
|
U. Je, et al., Dental cone-beam CT reconstruction from limited-angle view data based on compressed-sensing (CS) theory for fast, low-dose X-ray imaging, Journal of the Korean Physical Society, 64 (2014), 1907-1911.
doi: 10.3938/jkps.64.1907.
|
[21]
|
J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Springer, New York, 2005.
doi: 10.1007/b138659.
|
[22]
|
S. Kida, et al., Cone beam computed tomography image quality improvement using a deep convolutional neural network, Cureus, 10 (2018), e2548.
doi: 10.7759/cureus.2548.
|
[23]
|
T. Kluth, C. Bathke, M. Jiang and P. Maass, Joint super-resolution image reconstruction and parameter identification in imaging operator: analysis of bilinear operator equations, numerical solution, and application to magnetic particle imaging, Inverse Problems, 36 (2020), 124006.
doi: 10.1088/1361-6420/abc2fe.
|
[24]
|
A. Kofler, et al., Neural networks-based regularization for large-scale medical image reconstruction, Physics in Medicine & Biology, 65 (2020), 135003.
doi: 10.1088/1361-6560/ab990e.
|
[25]
|
H. Lan, J. Zhang, C. Yang and F. Gao, Compressed sensing for photoacoustic computed tomography based on an untrained neural network with a shape prior, Biomedical Optics Express, 12 (2021), 7835-7848.
doi: 10.1364/boe.441901.
|
[26]
|
J. Lancaster and B. Hasegawa, Computed tomography, In Fundamental Mathematics and Physics of Medical Imaging, CRC Press, 2016,295-312.
doi: 10.1201/9781315368214-28.
|
[27]
|
S. Latva-Äijö, et al., Helsinki tomography challenge 2022 (HTC 2022), Available at https://www.fips.fi/Helsinki_Tomography_Challenge_2022_v11.pdf, October 2022. Last accessed 14, April 2023.
|
[28]
|
J. Leuschner, et al., Quantitative comparison of deep learning-based image reconstruction methods for low-dose and sparse-angle CT applications, Journal of Imaging, 7 (2021), 44.
doi: 10.3390/jimaging7030044.
|
[29]
|
H. Li, J. Schwab, S. Antholzer and M. Haltmeier, NETT: Solving inverse problems with deep neural networks, Inverse Problems, 36 (2020), 065005, 23 pp.
doi: 10.1088/1361-6420/ab6d57.
|
[30]
|
L. Li, et al., Compressed sensing improved iterative reconstruction-reprojection algorithm for electron tomography, BMC Bioinformatics, 21 (2020), Article number: 202.
doi: 10.1186/s12859-020-3529-3.
|
[31]
|
X. Li, G. Feng and J. Zhu, An algorithm of $\ell_1$-norm and $\ell_0$-norm regularization algorithm for CT image reconstruction from limited projection, International Journal of Biomedical Imaging, 2020 (2020), Article ID 8873865.
doi: 10.1155/2020/8873865.
|
[32]
|
K. Lu, L. Ren and F.-F. Yin, A geometry-guided deep learning technique for CBCT reconstruction, Physics in Medicine & Biology, 66 (2021), 15LT01.
doi: 10.1088/1361-6560/ac145b.
|
[33]
|
A. Majumdar, Compressed Sensing for Engineers, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2019. ISBN: 9781032338712.
|
[34]
|
A. Meaney, F. S. Moura and S. Siltanen, Helsinki Tomography Challenge 2022 open tomographic dataset (HTC 2022), (2022). Available at: https://zenodo.org/record/7418878.
|
[35]
|
J. L. Mueller and S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications, volume 10 of Computational Science Engineering, Society for Industrial and Applied Mathematics, United States, 2012.
|
[36]
|
F. Natterer, The Mathematics of Computerized Tomography, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.
doi: 10.1137/1.9780898719284.
|
[37]
|
G. Ongie, et al., Deep learning techniques for inverse problems in imaging, IEEE Journal on Selected Areas in Information Theory, 1 (2020), 39-56.
doi: 10.1109/JSAIT.2020.2991563.
|
[38]
|
N. Otsu, A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9 (1979), 62-66.
doi: 10.1109/TSMC.1979.4310076.
|
[39]
|
P.-A. Poletti, et al., Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic, American Journal of Roentgenology, 188 (2007), 927-933.
doi: 10.2214/ajr.06.0793.
|
[40]
|
A. Qayyum, et al., Untrained neural network priors for inverse imaging problems: A survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, 45 (2023), 6511-6536.
doi: 10.1109/tpami.2022.3204527.
|
[41]
|
E. T. Quinto, Limited-data tomography, In Computed Tomography: Algorithms, Insight, and Just Enough Theory, Society for Industrial and Applied Mathematics, 2021,123-153.
doi: 10.1137/1.9781611976670.ch8.
|
[42]
|
H. Rabbani, N. Teyfouri and I. Jabbari, Low-dose cone-beam computed tomography reconstruction through a fast three-dimensional compressed sensing method based on the three-dimensional pseudo-polar Fourier transform, Journal of Medical Signals & Sensors, 12 (2022), 8.
|
[43]
|
S. Ravishankar, J. C. Ye and J. A. Fessler, Image reconstruction: From sparsity to data-adaptive methods and machine learning, Proceedings of the IEEE, 108 (2020), 86-109.
doi: 10.1109/jproc.2019.2936204.
|
[44]
|
W. C. Scarfe and A. G. Farman, What is cone-beam CT and how does it work?, Dental Clinics of North America, 52 (2008), 707-730.
doi: 10.1016/j.cden.2008.05.005.
|
[45]
|
J. K. Seo and E. J. Woo, Nonlinear Inverse Problems in Imaging, Wiley, Chichester, 2013.
doi: 10.1002/9781118478141.
|
[46]
|
C. C. Shaw, Cone Beam Computed Tomography, CRC Press, Boca Raton, USA, 1st ed., 2014. ISBN: 9781439846278.
|
[47]
|
L. A. Shepp and B. F. Logal, The Fourier reconstruction of a head section, IEEE Transactions on Nuclear Science, 21 (1974), 21-43.
doi: 10.1109/TNS.1974.6499235.
|
[48]
|
J. H. Siewerdsen, Cone-beam CT systems, In Computed Tomography, Springer International Publishing, 2019, 11-26.
doi: 10.1007/978-3-030-26957-9_2.
|
[49]
|
D. Tack, V. D. Maertelaer and P. A. Gevenois, Dose reduction in multidetector CT using attenuation-based online tube current modulation, American Journal of Roentgenology, 181 (2003), 331-334.
doi: 10.2214/ajr.181.2.1810331.
|
[50]
|
N. Tirada, et al., Digital breast tomosynthesis: Physics, artifacts, and quality control considerations, RadioGraphics, 39 (2019), 413-426.
doi: 10.1148/rg.2019180046.
|
[51]
|
D. Ulyanov, A. Vedaldi and V. Lempitsky, Deep image prior, International Journal of Computer Vision, 128 (2020), 1867-1888.
doi: 10.1007/s11263-020-01303-4.
|
[52]
|
T. Wurfl, et al., Deep learning computed tomography: Learning projection-domain weights from image domain in limited angle problems, IEEE Transactions on Medical Imaging, 37 (2018), 1454-1463.
doi: 10.1109/TMI.2018.2833499.
|
[53]
|
Y. Xie and Q. Li, A review of deep learning methods for compressed sensing image reconstruction and its medical applications, Electronics, 11 (2022), 586.
doi: 10.3390/electronics11040586.
|
[54]
|
M. Zhang, S. Gu and Y. Shi, The use of deep learning methods in low-dose computed tomography image reconstruction: A systematic review, Complex & Intelligent Systems, 8 (2022), 5545-5561.
doi: 10.1007/s40747-022-00724-7.
|