\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multibang regularization for electrical impedance tomography

  • *Corresponding author: Thi Bich Tram Do

    *Corresponding author: Thi Bich Tram Do 
Abstract / Introduction Full Text(HTML) Figure(6) / Table(2) Related Papers Cited by
  • This study is concerned with a regularization approach for electrical impedance tomography in the Kuopio Tomography Challenge 2023. As the unknown conductivity in the electrical impedance tomography setting is known to take values on a given discrete set, we propose multibang regularization as a suitable method to recover this parameter from measurement. The numerical solution for the data set provided by the organizers of the challenge will be derived by a primal-dual splitting method. Additionally, we will have a discussion about the reconstruction when adding total variation in the regularizer.

    Mathematics Subject Classification: Primary: 49N45, 65J22; Secondary: 65J20, 65K99.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Structure of the pointwise multibang penalty for $ (\sigma_1,\sigma_2,\sigma_3) = (0,1,2) $, its subdifferential and the Fenchel conjugate of its subdifferential

    Figure 2.  Phantoms of the training data (first row) as well as the reconstruction for level 1 of our 3 approaches: reconstruction with multibang penalty (second row), segmentation with multibang regularization (third row) and segmentation with multibang & TV regularization (4th row)

    Figure 3.  Reconstruction of phantom 4: Tikhonov reconstruction, TV regularized reconstruction and multibang reconstruction

    Figure 4.  Segmentation of the training data with multibang regularization of a base reconstruction with Tikhonov regularization (12)

    Figure 5.  Reconstruction and ground truth for phantom A, B, C of the validation data from difficulty level 1 (first row) till level 7 (7th row) for the segmentation approach with multibang regularization

    Figure 6.  Reconstruction and ground truth for phantom A, B, C of the validation data from difficulty level 1 (first row) till level 7 (7th row) for the segmentation approach with multibang & TV regularization

    Table 1.  Dual functions and proximal operators for the operator splitting. We denote with $ P_C $ the orthogonal projection operator onto the convex and closed set $ C $ and with $ $_\beta $ the soft shrinkage operator. With $ B_{\| {\cdot} \|_\infty,\beta}(0) $ we denote the closed ball around $ 0 $ with radius $ \beta $ with respect to the $ \| {\cdot} \|_\infty $-norm

    $ f(u) $ $ f^*(p) $ $ {\rm{prox}}_{\tau f} (z) $ $ {\rm{prox}}_{\tau f^*}(z) $
    $ \beta \| u \| _1 $ $ \delta_{B_{\| {\cdot} \|_\infty, \beta}(0)}(p) $ $ $_\beta (z) $ $ \mathrm{P}_{B_{\| {\cdot} \|_\infty, \beta}(0)}(z) $
    $ \frac 1 2 \| {u-y} \|_{\Gamma_{\Delta n}^{-1}}^2 $ $ \frac 1 2 \| {p} \|_{\Gamma_{\Delta n}}^2 + \langle p, y \rangle $ $ (I + \tau \Gamma_{\Delta n}^{-1})^{-1}(z + \tau \Gamma_{\Delta n}^{-1} y) $ $ (I + \tau \Gamma_{\Delta n})^{-1}(z - \tau y) $
    $ \frac 1 2 \| {u-y} \|_2^2 $ $ \frac 1 2 \| {p} \|_2^2 + \langle p, y \rangle $ $ \frac{z + \tau y}{1 + \tau} $ $ \frac{z-\tau y}{1 + \tau} $
     | Show Table
    DownLoad: CSV

    Table 2.  SSIM values for the validation data set of our three methods. The method 3 was overall the best rated approach, however, we underlined those values which are lower than at least one of those of the two other methods. Moreover, we overlined those SSIM values of method 1 which are better than those of method 3

    method sample level 1 level 2 level 3 level 4 level 5 level 6 level 7
    1 $ S_{j}^{A} $ $ 0.60 $ $ 0.53 $ $ 0.52 $ $ 0.22 $ $ 0.04 $ $ \overline{0.54} $ $ 0.18 $
    $ S_{j}^{B} $ $ 0.60 $ $ 0.52 $ $ 0.60 $ $ 0.09 $ $ 0.53 $ $ 0.11 $ $ 0.07 $
    $ S_{j}^{C} $ $ 0.55 $ $ 0.55 $ $ 0.50 $ $ 0.22 $ $ 0.02 $ $ \overline{0.19} $ $ 0.52 $
    2 $ S_{j}^{A} $ $ 0.87 $ $ 0.92 $ $ 0.07 $ $ 0.54 $ $ 0.34 $ $ 0.27 $ $ 0.02 $
    $ S_{j}^{B} $ $ 0.90 $ $ 0.28 $ $ 0.84 $ $ 0.39 $ $ 0.07 $ $ 0.03 $ $ 0.09 $
    $ S_{j}^{C} $ $ 0.84 $ $ 0.91 $ $ 0.59 $ $ 0.27 $ $ 0.35 $ $ -0.01 $ $ 0.68 $
    3 $ S_{j}^{A} $ $ 0.91 $ $ \underline{0.22} $ $ 0.66 $ $ 0.43 $ $ 0.24 $ $ \underline{0.18} $ $ 0.22 $
    $ S_{j}^{B} $ $ 0.84 $ $ 0.61 $ $ \underline{0.39} $ $ \underline{0.24} $ $ 0.60 $ $ 0.26 $ $ 0.22 $
    $ S_{j}^{C} $ $ \underline{0.24} $ $ 0.70 $ $ 0.51 $ $ 0.45 $ $ \underline{0.13} $ $ \underline{0.16} $ $ 0.69 $
     | Show Table
    DownLoad: CSV
  • [1] A. AdlerR. Gaburro and W. R. B. Lionheart, Electrical impedance tomography, Handbook of Mathematical Methods in Imaging, 1 (2015), 701-762. 
    [2] J. P. AgnelliV. KolehmainenM. J. LassasP. Ola and S. Siltanen, Simultaneous Reconstruction of Conductivity, Boundary Shape, and Contact Impedances in Electrical Impedance Tomography, SIAM Journal on Imaging Sciences, 14 (2021), 1407-1438.  doi: 10.1137/21M1407975.
    [3] R. H. Bayford, Bioimpedance Tomography (electrical impedance tomography), Anual Review of Biomedical Engineering, 8 (2006), 63-91. 
    [4] A. Beck, First-order Methods in Optimization, MOS-SIAM Ser. Optim., 25, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA, 2017. doi: 10.1137/1.9781611974997.ch1.
    [5] A. Borsic, B. M. Graham, A. Adler and W. R. B. Lionheart, In vivo impedance imaging with total variation regularization, IEEE Transactions on Medical Imaging, IEEE, 29 (2010), 44-54. doi: 10.1109/TMI.2009.2022540.
    [6] V. Candiani and M. Santacesaria, Neural networks for classification of strokes in electrical impedance tomography on a 3D head model, Mathematics in Engineering, 4 (2022), Paper No. 029, 22 pp. doi: 10.3934/mine.2022029.
    [7] M. Capps and J. L. Mueller, Reconstruction of organ boundaries with deep learning in the D-bar method for electrical impedance tomography, IEEE Transactions on Biomedical Engineering, IEEE, 68 (2021), 826-833. doi: 10.1109/TBME.2020.3006175.
    [8] A. Chambolle, Finite-differences discretizations of the Mumford-Shah functional, ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 33 (1999), 261-288. doi: 10.1051/m2an:1999115.
    [9] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), 120-145.  doi: 10.1007/s10851-010-0251-1.
    [10] G. Chavent and K. Kunisch, Regularization of linear least squares problems by total bounded variation, ESAIM: COCV, 2 (1997), 359-376.  doi: 10.1051/cocv:1997113.
    [11] C. Clason and T. B. T. Do, Convex regularization of discrete-valued inverse problems, New Trends in Parameter Identification for Mathematical Models, Trends Math., Birkhäuser/Springer, Cham, (2018), 31-51. doi: 10.1007/978-3-319-70824-9_2.
    [12] C. ClasonB. Jin and K. Kunisch, A Duality-Based Splitting Method for $\ell^1$ - $TV$ Image Restoration with Automatic Regularization Parameter Choice, SIAM Journal on Scientific Computing, 32 (2010), 1484-1505.  doi: 10.1137/090768217.
    [13] C. ClasonB. Jin and K. Kunisch, A Semismooth Newton Method for $\mathrm{L}^1$ Data Fitting with Automatic Choice of Regularization Parameters and Noise Calibration, SIAM Journal on Imaging Sciences, 3 (2010), 199-231.  doi: 10.1137/090758003.
    [14] C. Clason and K. Kunisch, A convex analysis approach to multi-material topology optimization, ESAIM: Mathematical Modelling and Numerical Analysis, 50 (2016), 1917-1936.  doi: 10.1051/m2an/2016012.
    [15] C. Clason and K. Kunisch, Multi-bang control of elliptic systems, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 31 (2014), 1109-1130.  doi: 10.1016/j.anihpc.2013.08.005.
    [16] C. Clason and T. Valkonen, Introduction to nonsmooth analysis and optimization, arXiv: 2001.00216.
    [17] A. Coxson, I. Mihov, Z. Wang, V. Avramov, F. Brooke Barnes, S. Slizovskiy, C. Mullan, I. Timokhin, D. Sanderson, A. Kretinin, Q. Yang, W. R. B. Lionheart and A. Mishchenko, Machine learning enhanced electrical impedance tomography for 2D materials, Inverse Problems, 38 (2022), Paper No. 085007, 27 pp. doi: 10.1088/1361-6420/ac7743.
    [18] M. Dashti and A. M. Stuart, The bayesian approach to inverse problems, Handbook of Uncertainty Quantification, Springer, Cham, 1 (2017), 311-428.
    [19] T. B. T. Do, Discrete regularization for parameter identification problems, PhD Thesis, Universität Duisburg-Essen, 2019. doi: 10.17185/duepublico/70265.
    [20] H. Garde, Reconstruction of piecewise constant layered conductivities in electrical impedance tomography, Communications in Partial Differential Equations, 45 (2020), 1118-1133.  doi: 10.1080/03605302.2020.1760884.
    [21] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Boston, MA, 1984. doi: 10.1007/978-1-4684-9486-0.
    [22] G. GonzálezV. Kolehmainen and A. Seppänen, Isotropic and anisotropic total variation regularization in electrical impedance tomography, Computers & Mathematics with Applications, 74 (2017), 564-576.  doi: 10.1016/j.camwa.2017.05.004.
    [23] M. HallajiA. Seppänen and M. Pour-Ghaz, Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete, Smart Materials and Structures, 23 (2014), 085001.  doi: 10.1088/0964-1726/23/8/085001.
    [24] S. J. Hamilton and A. Hauptmann, Deep D-bar: Real-time electrical impedance tomography imaging with deep neural networks, IEEE Transactions on Medical Imaging, IEEE, 37 (2018), 2367-2377. doi: 10.1109/TMI.2018.2828303.
    [25] B. Harrach and M. N. Minh, Monotonicity-based regularization for phantom experiment data in electrical impedance tomography, New Trends in Parameter Identification for Mathematical Models, Trends Math., Birkhäuser/Springer, Cham, (2018), 107-120. doi: 10.1007/978-3-319-70824-9_6.
    [26] K. ItoB. Jin and T. Takeuchi, Multi-parameter Tikhonov regularization-An augmented approach, Chinese Annals of Mathematics, Series B, 35 (2014), 383-398.  doi: 10.1007/s11401-014-0835-y.
    [27] J. JauhiainenP. KuuselaA. Seppänen and T. Valkonen, Relaxed gauss–newton methods with applications to electrical impedance tomography, SIAM Journal on Imaging Sciences, 13 (2020), 1415-1445.  doi: 10.1137/20M1321711.
    [28] B. Jin and P. Maass, An analysis of electrical impedance tomography with applications to Tikhonov regularization, ESAIM: COCV, 18 (2012), 1027-1048.  doi: 10.1051/cocv/2011193.
    [29] B. Jin and Y. Xu, Adaptive reconstruction for electrical impedance tomography with a piecewise constant conductivity, Inverse Problems, 36 (2020), 014003, 28 pp. doi: 10.1088/1361-6420/ab261e.
    [30] Y. M. Jung and S. Yun, Impedance Imaging With First-Order TV Regularization, IEEE Transactions on Medical Imaging, IEEE, 34 (2015), 193-202. doi: 10.1109/TMI.2014.2351014.
    [31] D. LiuJ. WangQ. ShanD. SmylJ. Deng and J. Du, DeepEIT: Deep image prior enabled electrical impedance tomography, IEEE Transactions on Pattern Analysis and Machine Intelligence, 45 (2023), 9627-9638.  doi: 10.1109/TPAMI.2023.3240565.
    [32] J. L. Mueller and S. Siltanen, The D-bar method for electrical impedance tomography-demystified, Inverse Problems, 36 (2020), 093001, 28 pp. doi: 10.1088/1361-6420/aba2f5.
    [33] T. N. T. QuyenM. Hinze and B. Kaltenbacher, Identifying conductivity in electrical impedance tomography with total variation regularization, Numerische Mathematik, 138 (2018), 723-765.  doi: 10.1007/s00211-017-0920-8.
    [34] M. Räsänen, P. Kuusela, J. Jauhiainen, M. Arif, K. Scheel, T. Savolainen and A. Seppänen, Kuopio Tomography Challenge 2023 (KTC2023), 2023.
    [35] L. I. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.
    [36] E. SomersaloM. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM Journal on Applied Mathematics, 52 (1992), 1023-1040.  doi: 10.1137/0152060.
    [37] P. J. VauhkonenM. VauhkonenT. Savolainen and J. P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model, IEEE Transactions on Biomedical Engineering, 46 (1999), 1150-1160.  doi: 10.1109/10.784147.
    [38] K. ZhangM. LiF. YangS. Xu and A. Abubakar, Electrical impedance tomography with multiplicative regularization, Inverse Problems and Imaging, 13 (2019), 1139-1159.  doi: 10.3934/ipi.2019051.
  • 加载中

Figures(6)

Tables(2)

SHARE

Article Metrics

HTML views(2203) PDF downloads(162) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return