\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Post-processing electrical impedance tomography reconstructions with incomplete data using convolutional neural networks

  • *Corresponding author: Roberto G. Beraldo

    *Corresponding author: Roberto G. Beraldo 
Abstract / Introduction Full Text(HTML) Figure(20) / Table(5) Related Papers Cited by
  • Electrical impedance tomography (EIT) is a technique to obtain conductivity maps from electrical voltage measurements in a region of interest. In this work, we discuss the proposal we submitted to the Kuopio Tomography Challenge 2023, whose aim was to reconstruct and segment EIT images obtained from limited data, after electrode disconnection. Our proposal, denoted 01A, consisted of an initial reconstruction using the smoothness prior and post-processing steps, including denoising and deblurring with a convolutional neural network (CNN), as a way to integrate deep learning and inverse problems. The score was calculated using the structural similarity index in 21 test cases. While the score of the reconstruction using only smoothness prior was $ 9.69 $, the score of 01A was $ 12.75 $. Also, we developed an improved proposal, denoted 01A+, using hyperparameter optimization and its score was $ 13.30 $. We obtained better results using 01A and 01A+ than using the original smoothness prior, but the proposals lacked consistency when more electrodes were disconnected and when the targets were too different from the CNN training data. Even so, 01A obtained second place at KTC2023, representing a way to remove artifacts from electrode disconnection in EIT reconstructions.

    Mathematics Subject Classification: 68T07, 68U10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Level 1: Available reference voltage $ \mathbf{v}^m_{ref} $

    Figure 2.  Level 7: Available reference voltage $ \mathbf{v}^m_{ref} $

    Figure 3.  KTC training set: All samples available

    Figure 4.  Test set samples

    Figure 5.  Overview of the proposal. The ground truth image and the segmented result from Step 6 follow the color scheme defined in section 3.1.2

    Figure 6.  Sensibility analysis: $ \mathbf{J}_{\ell_1} $ from Level 1

    Figure 7.  Sensibility analysis: $ \mathbf{J}_{\ell_1} $ from Level 7

    Figure 8.  Singular values of the Jacobian of the EIT forward operator for each level

    Figure 9.  CNN training set samples: Inputs and outputs [AU]

    Figure 10.  Step-by-step visualization of the proposal 01A

    Figure 11.  Step-by-step visualization of the proposal 01A

    Figure 12.  Step-by-step visualization of the proposal 01A

    Figure 13.  Results on the test set: $ S_1^A $

    Figure 14.  Results on the test set: $ S_3^B $

    Figure 15.  Results on the test set: $ S_6^A $

    Figure 16.  Failure cases: Ground truth (top row) and 01A reconstructions (bottom row)

    Figure 17.  Example of results that were improved with the use of the best set of hyperparameter values found in the optimization

    Figure 18.  Example of results that were worsened with the use of the best set of hyperparameter values found in the optimization

    Figure 19.  CNN architecture visualization

    Figure 20.  Influence of $ k_C $ on 01A ($ S_T^B $, level 7)

    Table 1.  Rank of the Jacobian matrix for each difficulty level

    Level 1 2 3 4 5 6 7
    $ \mathbf{J}(\mathit{\boldsymbol{\sigma}}_0) $ rank 376 333 293 254 219 183 152
     | Show Table
    DownLoad: CSV

    Table 2.  Results of SSIM. Values are presented as "Mean (standard deviation)" per level

    Method/level 1 2 3 4 5 6 7
    00X (Example code) 0.80 0.67 0.50 0.39 0.35 0.19 0.32
    (0.09) (0.06) (0.34) (0.07) (0.25) (0.03) (0.32)
    01A (2nd place) 0.92 0.79 0.69 0.58 0.36 0.51 0.41
    (0.11) (0.10) (0.19) (0.14) (0.24) (0.21) (0.28)
    01B (Alternative) 0.87 0.72 0.56 0.41 0.28 0.49 0.42
    (0.10) (0.05) (0.24) (0.26) (0.25) (0.15) (0.26)
    02G (3rd place) 0.76 0.79 0.62 0.52 0.45 0.48 0.53
    (0.32) (0.02) (0.38) (0.08) (0.21) (0.17) (0.26)
    06B (1st place) 0.92 0.85 0.85 0.57 0.69 0.64 0.56
    (0.05) (0.04) (0.10) (0.03) (0.20) (0.05) (0.29)
     | Show Table
    DownLoad: CSV

    Table 3.  Results of SSIM considering all levels together

    Method Mean Std. dev. Sum Max. Min. Improvement
    00X 0.46 0.27 9.69 0.87 0.06
    01A 0.61 0.25 12.75 0.98 0.17 $ 15\% $
    01B 0.54 0.26 11.25 0.97 0.12 $ 5\% $
    02G 0.59 0.24 12.45 0.95 0.21 $ 13\% $
    06B 0.73 0.18 15.24 0.95 0.30 $ 27\% $
     | Show Table
    DownLoad: CSV

    Table 4.  Range of hyperparameters considered in the automatic optimization

    Hyperparameter Reference equation Search Space
    $ \lambda $ (14) Floats between 0.1 and 100
    $ k_T $ (16) Floats between 0 and 0.85
    $ k_C $ (18) Floats between 0.1 and 5
    $ r $ (20) Integers between 5 and 25
     | Show Table
    DownLoad: CSV

    Table 5.  Convolutional neural network architecture

    Parameter DIP
    Input and output sizes $ 64 \times 64 \times 1 $
    Max. No. of filters (Conv2D) 256a
    Min. No. of filters (Conv2D) 64a
    Filters size in each layer (Conv2D) $ 3 \times 3 $ (all)
    Activation functions ReLu
    Trainable parameters 1108097
    a except the last layer.
     | Show Table
    DownLoad: CSV
  • [1] A. Adler and  D. HolderElectrical Impedance Tomography: Methods, history and applications, 2$^{nd}$ edition, CRC Press, Boca Raton, 2021.  doi: 10.1201/9780429399886.
    [2] T. Akiba, et al., Optuna: A next-generation hyperparameter optimization framework, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2019), 2623-2631. doi: 10.1145/3292500.3330701.
    [3] M. Aller, et al., Study and comparison of different machine learning-based approaches to solve the inverse problem in electrical impedance tomographies, Neural Computing and Applications, 35 (2022), 5465-5477. doi: 10.1007/s00521-022-07988-7.
    [4] R. C. Aster, B. Borchers and C. H. Thurber, Parameter Estimation and Inverse Problems, 3$^{rd}$ edition, Elsevier, Amsterdam, 2013. doi: 10.1016/C2015-0-02458-3.
    [5] M. Benning and M. Burger, Modern regularization methods for inverse problems, Acta Numerica, 27 (2018), 1-111.  doi: 10.1017/s0962492918000016.
    [6] R. G. Beraldo, et al., Simulated EIT Circular Targets with Noise and Blur, 2024, Available at: https://zenodo.org/records/10801591.
    [7] J. Bergstra, R. Bardenet, Y. Bengio and B. Kégl, Algorithms for hyper-parameter optimization, Advances in Neural Information Processing Systems, 24 (2011).
    [8] L. Borcea, Electrical impedance tomography, Inverse Problems, 18 (2002), 99-136.  doi: 10.1088/0266-5611/18/6/201.
    [9] G. Boverman, et al., Methods for compensating for variable electrode contact in EIT, IEEE Trans. on Biomedical Engineering, 56 (2009), 2762-2772. doi: 10.1109/TBME.2009.2027129.
    [10] A. Boyle and A. Adler, The impact of electrode area, contact impedance and boundary shape on EIT images, Physiological Measurement, 32 (2011), 745-754.  doi: 10.1088/0967-3334/32/7/S02.
    [11] B. BrazeyY. Haddab and N. Zemiti, Robust imaging using electrical impedance tomography: Review of current tools, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 478 (2022), 1-22.  doi: 10.1098/rspa.2021.0713.
    [12] K.-S. ChengD. IsaacsonJ. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, Trans. on Biomedical Engineering, 36 (1989), 918-24.  doi: 10.1109/10.35300.
    [13] C. R. M. Dumdum, et al., A hybrid reconstruction algorithm for web.EIT: A difference electrical impedance tomography simulation system, 1st International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, IEEE, (2019), 1-6. doi: 10.1109/HNICEM48295.2019.9073594.
    [14] L. A. Ferreira, et al., 2D electrical impedance tomography brain image reconstruction using deep image prior, IX Latin American Congress on Biomedical Engineering and XXVIII Brazilian Congress on Biomedical Engineering, Springer, Cham, (2024), 272-282. doi: 10.1007/978-3-031-49404-8_27.
    [15] I. Frerichs, et al., Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: Consensus statement of the translational EIT development study group, Thorax, 72 (2016), 83-93. doi: 10.1136/thoraxjnl-2016-208357.
    [16] G. González, et al., Experimental evaluation of 3D electrical impedance tomography with total variation prior, Inverse Problems in Science and Engineering, 24 (2015), 1411-31. doi: 10.1080/17415977.2015.1113961.
    [17] R. C. Gonzalez and R. E. Woods, Digital image processing, 4$^{th}$ edition, Pearson, New York, 2018.
    [18] S. J. Hamilton and A. Hauptmann, Deep D-bar: Real-time electrical impedance tomography imaging with deep neural networks, IEEE Trans. on Medical Imaging, 37 (2018), 2367-2377. doi: 10.1109/tmi.2018.2828303.
    [19] P. Hansen, Discrete Inverse Problems: Insight and Algorithms, 1$^{st}$ edition, Society for Industrial and Applied Mathematics, Philadelphia, 2010. doi: 10.1137/1.9780898718836.
    [20] C.-L. Hu, et al., Compensation for electrode detachment in electrical impedance tomography with wearable textile electrodes, Sensors, 22 (2022), 1-18. doi: 10.3390/s22249575.
    [21] P. HuaE. J. WooJ. G. Webster and W. J. Tompkins, Finite element modeling of electrode-skin contact impedance in electrical impedance tomography, Trans. on Biomedical Engineering, 40 (1993), 335-343.  doi: 10.1109/10.222326.
    [22] M. F. M. Jimenez, O. DeGuchy and R. F. Marcia, Deep convolutional autoencoders for deblurring and denoising low-resolution images, 2020 International Symposium on Information Theory and Its Applications (ISITA), IEEE, (2020), 549-553.
    [23] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, 1$^{st}$ edition, Springer, New York, 2005. doi: 10.1007/b138659.
    [24] A. Kaur and G. Dong, A complete review on image denoising techniques for medical images, Neural Process. Lett., 55 (2023), 7807-7850.  doi: 10.1007/s11063-023-11286-1.
    [25] T. A. Khan and S.-H. Ling, Review on electrical impedance tomography: Artificial intelligence methods and its applications, Algorithms, 12 (2019), 1-18.  doi: 10.3390/a12050088.
    [26] D. P. Kingma and J. Ba, ADAM: A method for stochastic optimization, 3rd International Conference on Learning Representations, 2015, arXiv: 1412.6980.
    [27] A. Kofler, et al., Neural networks-based regularization for large-scale medical image reconstruction, Physics in Medicine Biology, 65 (2020), 135003. doi: 10.1088/1361-6560/ab990e.
    [28] J. Kourunen, et al., Suitability of a PXI platform for an electrical impedance tomography system, Measurement Science and Technology, 20 (2008), 015503. doi: 10.1088/0957-0233/20/1/015503.
    [29] W. R. B. Lionheart, EIT reconstruction algorithms: Pitfalls, challenges and recent developments, Physiological Measurement, 25 (2004). doi: 10.1088/0967-3334/25/1/021.
    [30] D. Liu, et al., Nonlinear difference imaging approach to three-dimensional electrical impedance tomography in the presence of geometric modeling errors, IEEE Trans. on Biomedical Engineering, 63 (2016), 1956-65. doi: 10.1109/TBME.2015.2509508.
    [31] S. Martin and C. T. M. Choi, A post-processing method for three-dimensional electrical impedance tomography, Scientific Reports, 7 (2017), 1-10.  doi: 10.1038/s41598-017-07727-2.
    [32] J. L. Mueller and S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications, 1$^{st}$ edition, Society for Industrial and Applied Mathematics, Philadelphia, 2012. doi: 10.1137/1.9781611972344.
    [33] N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. on Systems, man, and Cybernetics, 9 (1979), 62-66.  doi: 10.1109/TSMC.1979.4310076.
    [34] M. Räsänen, et al., Kuopio tomography challenge 2023 (KTC2023), Available at https://www.fips.fi/KTC2023_Instructions_v3_Oct12.pdf.
    [35] M. Räsänen, et al., Kuopio Tomography Challenge 2023 open electrical impedance tomographic dataset (KTC 2023), 2023, Available at: https://zenodo.org/records/10418802.
    [36] Y. RomanoM. Elad and P. Milanfar, The little engine that Could: Regularization by denoising (RED), SIAM Journal on Imaging Sciences, 10 (2017), 1804-1844.  doi: 10.1137/16M1102884.
    [37] E. SomersaloM. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM Journal on Applied Mathematics, 52 (1992), 1023-1040.  doi: 10.1137/0152060.
    [38] D. UlyanovA. Vedaldi and V. Lempitsky, Deep image prior, International Journal of Computer Vision, 128 (2020), 1867-1888.  doi: 10.1007/s11263-020-01303-4.
    [39] P. J. Vauhkonen, M. Vauhkonen, T. Savolainen and J. P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model, IEEE Trans. on Biomedical Engineering, 46 (1999), 1150-1160. doi: 10.1109/10.784147.
    [40] S. V. Venkatakrishnan, C. A. Bouman and B. Wohlberg, Plug-and-Play priors for model based reconstruction, IEEE Global Conference on Signal and Information Processing, (2013), 945-948. doi: 10.1109/GlobalSIP.2013.6737048.
    [41] T. Vilhunen, et al., Simultaneous reconstruction of electrode contact impedances and internal electrical properties: Ⅰ. Theory, Measurement Science and Technology, 13 (2002), 1848-1854. doi: 10.1088/0957-0233/13/12/307.
    [42] Z. WangA. C. BovikH. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. on Image Processing, 13 (2004), 600-612.  doi: 10.1109/TIP.2003.819861.
    [43] T. Zhang, et al., Advances of deep learning in electrical impedance tomography image reconstruction, Frontiers in Bioengineering and Biotechnology, 10 (2022), 1-17. doi: 10.3389/fbioe.2022.1019531.
  • 加载中

Figures(20)

Tables(5)

SHARE

Article Metrics

HTML views(1680) PDF downloads(205) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return