\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An efficient hierarchical Bayesian method for the Kuopio tomography challenge 2023

  • *Corresponding author: Monica Pragliola

    *Corresponding author: Monica Pragliola 
Abstract / Introduction Full Text(HTML) Figure(11) / Table(1) Related Papers Cited by
  • The aim of Electrical Impedance Tomography (EIT) is to determine the electrical conductivity distribution inside a domain by applying currents and measuring voltages on its boundary. Mathematically, the EIT reconstruction task can be formulated as a non-linear inverse problem. The Bayesian inverse problems framework has been applied extensively to solutions of the EIT inverse problem, in particular in the cases when the unknown conductivity is believed to be blocky. Recently, the Sparsity Promoting Iterative Alternating Sequential (SP-IAS) algorithm, originally proposed for the solution of linear inverse problems, has been adapted for the non linear case of EIT reconstruction [10] in a computationally efficient manner. Here we introduce a hybrid version of the SP-IAS algorithms for the nonlinear EIT inverse problem, consisting of a sequence of two optimization problems. The unique solution of the first problem is a suitable initial guess for the second one, which is non-convex and is expected to more effectively promote sparsity in the distribution of the increments of the blocky targets. We provide a detailed description of the implementation details of the proposed scheme, with a specific focus on parameters selection. The SP-IAS method is applied to the 2023 Kuopio Tomography Challenge dataset. A comprehensive report of the running times for the different cases and parameter selections is presented.

    Mathematics Subject Classification: Primary: 65K10, 65Z05, 65F22, 62F15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Overview of the hybrid IAS algorithm for the EIT nonlinear inverse problem. The apricot boxes contain the input and the output stages. The red and reddish boxes are related to the process of selection of parameters, either in an automatic or manual fashion. The purple and purplish boxes contain the actual body of the algorithm, i.e. the sequence of the two phases and, within each phase, the alternation between the $ \zeta $- and the $ \theta $-update

    Figure 2.  Tessellation used for solving the inverse problem, with the $ L = 32 $ circular arcs representing the areas on the boundary of the circular domain spanned by the electrodes

    Figure 3.  Output reconstruction obtain with the single hyperprior IAS algorithm with $ r = 1 $ (left), $ r = 1/2 $ (middle), and by the hybrid IAS (right) for phantom #1 and $ N_j = 76 $

    Figure 4.  Iterative estimates of the conductivity map for phantom #1 with $ N_{inj} = 76 $ obtained with the hybrid IAS in the first phase with $ r^{(1)} = 1 $ (top panels) and in the second with $ r^{(2)} = 1/2 $ phase (middle panels). In the bottom, target (left) and output segmentation (right) corresponding to the 10-th iteration of the overall hybrid scheme

    Figure 5.  Pairs of output $ \sigma $-estimates and corresponding segmentations for phantom #1 as functions of different numbers $ N_{inj} $ of injected currents

    Figure 6.  Iterative estimates of the conductivity map for phantom #2 with $ N_{inj} = 76 $ computed with the hybrid IAS scheme in the first phase with $ r^{(1)} = 1 $ (top panels) and in the second with $ r^{(2)} = 1/2 $ phase (middle panels). The bottom row displays the target (left) and output segmentation (right) corresponding to the 10-th iteration of the hybrid scheme

    Figure 7.  Pairs of output $ \sigma $-estimates and corresponding segmentations for phantom #2 as functions of different numbers $ N_{inj} $ of injected currents

    Figure 8.  Iterative estimates of the conductivity map for phantom #3 with $ N_{inj} = 76 $ computed by the hybrid IAS scheme in the first phase with $ r^{(1)} = 1 $ (top panels) and in the second with $ r^{(2)} = 1/2 $ phase (middle panels). In the bottom, target (left) and output segmentation (right) corresponding to the 10-th iteration of the overall hybrid scheme

    Figure 9.  Pairs of output $ \sigma $-estimates and corresponding segmentations for phantom #3 as functions of different numbers $ N_{inj} $ of injected currents

    Figure 10.  For the three phantoms, behavior of $ \delta\theta_1 $ and $ \delta\theta_2 $ as functions of the iteration number of the hybrid IAS in the case of $ L = 32 $ active electrodes and $ N_{inj} = 76 $ current injections

    Figure 11.  For the three phantoms, average running times in seconds and dispersion bands of the hybrid IAS as a function of the number of injected currents

    Table 1.  Values of the SSIM-based scores achieved for the three different phantoms and for different difficulty levels $ \tau $, i.e. for different numbers $ N_{inj} $ of injective currents and different number $ L $ of electrodes

    Level $ \tau $ $ L $ $ N_{inj} $ phantom #1 phantom #2 phantom #3
    1 32 76 0.6915 0.8978 0.7628
    2 30 56 0.7031 0.8987 0.7908
    3 28 52 0.6981 0.8939 0.7912
    4 26 48 0.6308 0.8774 0.7651
    5 24 44 0.5582 0.8987 0.8093
    6 22 30 0.5781 0.6978 0.7206
    7 20 27 0.6361 0.6341 0.6317
     | Show Table
    DownLoad: CSV
  • [1] M. R. Akbarzadeh, W. J. Tompkins and J. G. Webster, Multichannel impedance pneumography for apnea monitoring, Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (1990), 1048-1049. doi: 10.1109/IEMBS.1990.691591.
    [2] G. AlessandriniM. V. de HoopR. Gaburro and E. Sincich, EIT in a layered anisotropic medium, Inverse Problems and Imaging, 12 (2018), 667-676.  doi: 10.3934/ipi.2018028.
    [3] T. K. Bera, Applications of electrical impedance tomography (EIT): A short review, IOP Conference Series: Materials Science and Engineering, 331 (2018), 012004.  doi: 10.1088/1757-899X/331/1/012004.
    [4] A. Bocchinfuso, D. Calvetti and E. Somersalo, Adaptive anisotropic Bayesian meshing for inverse problems, Inverse Problems, 40 (2024), Paper No. 045008, 32 pp. doi: 10.1088/1361-6420/ad2696.
    [5] A. Borsic and A. Adler, A primal–dual interior-point framework for using the L$_1$ or L$_2$ norm on the data and regularization terms of inverse problems, Inverse Problems, 28 (2012), 095011.  doi: 10.1088/0266-5611/28/9/095011.
    [6] D. CalvettiA. PascarellaF. PitolliE. Somersalo and B. Vantaggi, A hierarchical Krylov–Bayes iterative inverse solver for MEG with physiological preconditioning, Inverse Problems, 31 (2015), 125005.  doi: 10.1088/0266-5611/31/12/125005.
    [7] D. CalvettiA. PascarellaF. PitolliE. Somersalo and B. Vantaggi, Brain activity mapping from MEG data via a hierarchical Bayesian algorithm with automatic depth weighting, Brain Topography, 32 (2019), 363-393.  doi: 10.1007/s10548-018-0670-7.
    [8] D. CalvettiF. PitolliE. Somersalo and B Vantaggi, Bayes meets Krylov: Statistically inspired preconditioners for CGLS, SIAM Review, 60 (2018), 429-461.  doi: 10.1137/15M1055061.
    [9] D. Calvetti, M. Pragliola and E. Somersalo, Sparsity promoting hybrid solvers for hierarchical Bayesian inverse problems, SIAM Journal on Scientific Computing, 42 (2020), A3761-A3784. doi: 10.1137/20M1326246.
    [10] D. Calvetti, M. Pragliola and E. Somersalo, A computationally efficient EIT algorithm for imaging of blocky targets, arXiv preprint, arXiv submit/5567110, 2024.
    [11] D. CalvettiM. PragliolaE. Somersalo and A. Strang, Sparse reconstructions from few noisy data: Analysis of hierarchical Bayesian models with generalized gamma hyperpriors, Inverse Problems, 36 (2020), 025010.  doi: 10.1088/1361-6420/ab4d92.
    [12] D. Calvetti and E. Somersalo, Bayesian Scientific Computing, Springer Nature, 2023. doi: 10.1007/978-3-031-23824-6.
    [13] D. Calvetti and E. Somersalo, Computationally efficient sampling methods for sparsity promoting hierarchical Bayesian models, SIAM/ASA J. Uncertain. Quantif., 12 (2024), 524-548.  doi: 10.1137/23M1564043.
    [14] D. CalvettiE. Somersalo and A. Strang, Hierachical Bayesian models and sparsity: $\ell^2$-magic, Inverse Problems, 35 (2019), 035003.  doi: 10.1088/1361-6420/aaf5ab.
    [15] G. GonzálezJ. M. J. HuttunenV. KolehmainenA. Seppänen and M. Vauhkonen, Experimental evaluation of 3D electrical impedance tomography with total variation prior, Inverse Problems in Science and Engineering, 24 (2016), 1411-1431.  doi: 10.1080/17415977.2015.1113961.
    [16] L. Harhanen, N. Hyvönen, H. Majander and S. Staboulis, Edge-enhancing reconstruction algorithm for three-dimensional electrical impedance tomograph, SIAM Journal on Scientific Computing, 37 (2015), B60-B78. doi: 10.1137/140971750.
    [17] J. P. KaipioV. KolehmainenE. Somersalo and M. Vauhkonen, Statistical inversion and Monte Carlo sampling methods in electrical impedance tomograph, Inverse Problems, 16 (2000), 1487-1522.  doi: 10.1088/0266-5611/16/5/321.
    [18] J. KourunenT. SavolainenA. LehikoinenM. Vauhkonen and L. M. Heikkinen, Suitability of a PXI platform for an electrical impedance tomography system, Measurement Science and Technology, 20 (2008), 015503.  doi: 10.1088/0957-0233/20/1/015503.
    [19] E. SomersaloM. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM Journal on Applied Mathematics, 52 (1992), 1023-1040.  doi: 10.1137/0152060.
    [20] Z. WangA. C. BovikH. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing, 4 (2004), 600-612.  doi: 10.1109/TIP.2003.819861.
    [21] C. Wu and M. Soleimani, Frequency Difference EIT With Localization: A Potential Medical Imaging Tool During Cancer Treatment, IEEE Access, 7 (2019), 21870-21878.  doi: 10.1109/ACCESS.2019.2898091.
    [22] E. ZimmermannA. KemnaJ. BerwixW. Glaas and H. Vereecken, EIT measurement system with high phase accuracy for the imaging of spectral induced polarization properties of soils and sediments, Measurement Science and Technology, 19 (2008), 094010.  doi: 10.1088/0957-0233/19/9/094010.
  • 加载中

Figures(11)

Tables(1)

SHARE

Article Metrics

HTML views(1095) PDF downloads(40) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return