[1]
|
M. R. Akbarzadeh, W. J. Tompkins and J. G. Webster, Multichannel impedance pneumography for apnea monitoring, Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (1990), 1048-1049.
doi: 10.1109/IEMBS.1990.691591.
|
[2]
|
G. Alessandrini, M. V. de Hoop, R. Gaburro and E. Sincich, EIT in a layered anisotropic medium, Inverse Problems and Imaging, 12 (2018), 667-676.
doi: 10.3934/ipi.2018028.
|
[3]
|
T. K. Bera, Applications of electrical impedance tomography (EIT): A short review, IOP Conference Series: Materials Science and Engineering, 331 (2018), 012004.
doi: 10.1088/1757-899X/331/1/012004.
|
[4]
|
A. Bocchinfuso, D. Calvetti and E. Somersalo, Adaptive anisotropic Bayesian meshing for inverse problems, Inverse Problems, 40 (2024), Paper No. 045008, 32 pp.
doi: 10.1088/1361-6420/ad2696.
|
[5]
|
A. Borsic and A. Adler, A primal–dual interior-point framework for using the L$_1$ or L$_2$ norm on the data and regularization terms of inverse problems, Inverse Problems, 28 (2012), 095011.
doi: 10.1088/0266-5611/28/9/095011.
|
[6]
|
D. Calvetti, A. Pascarella, F. Pitolli, E. Somersalo and B. Vantaggi, A hierarchical Krylov–Bayes iterative inverse solver for MEG with physiological preconditioning, Inverse Problems, 31 (2015), 125005.
doi: 10.1088/0266-5611/31/12/125005.
|
[7]
|
D. Calvetti, A. Pascarella, F. Pitolli, E. Somersalo and B. Vantaggi, Brain activity mapping from MEG data via a hierarchical Bayesian algorithm with automatic depth weighting, Brain Topography, 32 (2019), 363-393.
doi: 10.1007/s10548-018-0670-7.
|
[8]
|
D. Calvetti, F. Pitolli, E. Somersalo and B Vantaggi, Bayes meets Krylov: Statistically inspired preconditioners for CGLS, SIAM Review, 60 (2018), 429-461.
doi: 10.1137/15M1055061.
|
[9]
|
D. Calvetti, M. Pragliola and E. Somersalo, Sparsity promoting hybrid solvers for hierarchical Bayesian inverse problems, SIAM Journal on Scientific Computing, 42 (2020), A3761-A3784.
doi: 10.1137/20M1326246.
|
[10]
|
D. Calvetti, M. Pragliola and E. Somersalo, A computationally efficient EIT algorithm for imaging of blocky targets, arXiv preprint, arXiv submit/5567110, 2024.
|
[11]
|
D. Calvetti, M. Pragliola, E. Somersalo and A. Strang, Sparse reconstructions from few noisy data: Analysis of hierarchical Bayesian models with generalized gamma hyperpriors, Inverse Problems, 36 (2020), 025010.
doi: 10.1088/1361-6420/ab4d92.
|
[12]
|
D. Calvetti and E. Somersalo, Bayesian Scientific Computing, Springer Nature, 2023.
doi: 10.1007/978-3-031-23824-6.
|
[13]
|
D. Calvetti and E. Somersalo, Computationally efficient sampling methods for sparsity promoting hierarchical Bayesian models, SIAM/ASA J. Uncertain. Quantif., 12 (2024), 524-548.
doi: 10.1137/23M1564043.
|
[14]
|
D. Calvetti, E. Somersalo and A. Strang, Hierachical Bayesian models and sparsity: $\ell^2$-magic, Inverse Problems, 35 (2019), 035003.
doi: 10.1088/1361-6420/aaf5ab.
|
[15]
|
G. González, J. M. J. Huttunen, V. Kolehmainen, A. Seppänen and M. Vauhkonen, Experimental evaluation of 3D electrical impedance tomography with total variation prior, Inverse Problems in Science and Engineering, 24 (2016), 1411-1431.
doi: 10.1080/17415977.2015.1113961.
|
[16]
|
L. Harhanen, N. Hyvönen, H. Majander and S. Staboulis, Edge-enhancing reconstruction algorithm for three-dimensional electrical impedance tomograph, SIAM Journal on Scientific Computing, 37 (2015), B60-B78.
doi: 10.1137/140971750.
|
[17]
|
J. P. Kaipio, V. Kolehmainen, E. Somersalo and M. Vauhkonen, Statistical inversion and Monte Carlo sampling methods in electrical impedance tomograph, Inverse Problems, 16 (2000), 1487-1522.
doi: 10.1088/0266-5611/16/5/321.
|
[18]
|
J. Kourunen, T. Savolainen, A. Lehikoinen, M. Vauhkonen and L. M. Heikkinen, Suitability of a PXI platform for an electrical impedance tomography system, Measurement Science and Technology, 20 (2008), 015503.
doi: 10.1088/0957-0233/20/1/015503.
|
[19]
|
E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM Journal on Applied Mathematics, 52 (1992), 1023-1040.
doi: 10.1137/0152060.
|
[20]
|
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing, 4 (2004), 600-612.
doi: 10.1109/TIP.2003.819861.
|
[21]
|
C. Wu and M. Soleimani, Frequency Difference EIT With Localization: A Potential Medical Imaging Tool During Cancer Treatment, IEEE Access, 7 (2019), 21870-21878.
doi: 10.1109/ACCESS.2019.2898091.
|
[22]
|
E. Zimmermann, A. Kemna, J. Berwix, W. Glaas and H. Vereecken, EIT measurement system with high phase accuracy for the imaging of spectral induced polarization properties of soils and sediments, Measurement Science and Technology, 19 (2008), 094010.
doi: 10.1088/0957-0233/19/9/094010.
|