[1]
|
V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards: Algorithms and Architectures, Springer Science & Business Media, 1997.
|
[2]
|
B. L. Brown, W. L. Miller, D. Bard, A. Boehnlein, K. Fagnan, C. Guok, E. Lançon, S. J. Ramprakash, M. Shankar and N. Schwarz, Integrated research infrastructure architecture blueprint activity (final report 2023), Technical report, US Department of Energy (USDOE), Washington, DC (United States). Office of …, 2023.
|
[3]
|
D. Bull, Communicating pictures: A course in Image and Video Coding, Academic Press, 2014.
|
[4]
|
C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer Science & Business Media, 2007.
|
[5]
|
C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in sobolev spaces, Mathematics of Computation, 38 (1982), 67-86.
doi: 10.1090/S0025-5718-1982-0637287-3.
|
[6]
|
F. Cappello, S. Di, S. Li, X. Liang, A. M. Gok, D. Tao, C.-H. Yoon, X.-C. Wu, Y. Alexeev and F. T. Chong, Use cases of lossy compression for floating-point data in scientific data sets, The International Journal of High Performance Computing Applications, 33 (2019), 1201-1220.
doi: 10.1177/1094342019853336.
|
[7]
|
L. Cordier, Proper orthogonal decomposition: An overview, Lecture series 2008-01 on post-processing of experimental and numerical data, Von Karman Institute for Fluid Dynamics, février 2008.
|
[8]
|
A. C. Eberendu, et al., Unstructured data: An overview of the data of big data, International
Journal of Computer Trends and Technology, 38 (2016), 46-50.
doi: 10.14445/22312803/IJCTT-V38P109.
|
[9]
|
G. E. Fasshauer, Meshfree Approximation Methods with MATLAB, volume 6., World Scientific, 2007.
|
[10]
|
N. M. Freris, O. Öçal and M. Vetterli, Compressed sensing of streaming data, In 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton), (2013), 1242-1249.
|
[11]
|
J. H. Halton, Algorithm 247: Radical-inverse quasi-random point sequence, Communications of the ACM, 7 (1964), 701-702.
doi: 10.1145/355588.365104.
|
[12]
|
T. Hines, RBF, https://rbf.readthedocs.io/en/latest/index.html.
|
[13]
|
G. Lee, R. Gommers, F. Waselewski, K. Wohlfahrt and A. O'Leary, Pywavelets: A python package for wavelet analysis, Journal of Open Source Software, 4 (2019), 1237.
doi: 10.21105/joss.01237.
|
[14]
|
A. Li, S. Becker and A. Doostan, Online randomized interpolative decomposition with a posteriori error estimator for temporal pde data reduction, preprint, arXiv: 2405.16076, 2024.
|
[15]
|
K. Murphy, Machine Learning: A probabilistic perspective, MIT Press, 2012.
|
[16]
|
S. Osher, Z. Shi and W. Zhu, Low dimensional manifold model for image processing, SIAM Journal on Imaging Sciences, 10 (2017), 1669-1690.
doi: 10.1137/16M1058686.
|
[17]
|
V. I. Paulsen and M. Raghupathi, An Introduction to the Theory of Reproducing Kernel
Hilbert Spaces, Cambridge Stud. Adv. Math., 152 Cambridge University Press, Cambridge,
2016.
|
[18]
|
B. P. Russo, M. P. Laiu and R. Archibald, Streaming compression of scientific data via weak-sindy, 2023.
|
[19]
|
D. Salomon, Data Compression, Springer, 2002.
doi: 10.1007/978-0-387-21708-6_4.
|
[20]
|
D. V. Schroeder, Fluid Dynamics Simulation, https://physics.weber.edu/schroeder/fluids/.
|
[21]
|
N. Shklov, Simpson's rule for unequally spaced ordinates, The American Mathematical Monthly, 67 (1960), 1022-1023.
doi: 10.2307/2309244.
|
[22]
|
A. J. Smola and B. Schölkopf, Learning with Kernels, volume 4., Citeseer, 1998.
|
[23]
|
H. Wendland, Scattered Data Approximation, volume 17. Cambridge university press, 2004.
doi: 10.1017/CBO9780511617539.
|
[24]
|
W. Zhu, B. Wang, R. Barnard, C. D. Hauck, F. Jenko and S. Osher, Scientific data interpolation with low dimensional manifold model, Journal of Computational Physics, 352 (2018), 213-245.
doi: 10.1016/j.jcp.2017.09.048.
|