\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

StOKeDMD: Streaming Occupation kernel dynamic mode decomposition

  • *Corresponding author: Efrain H. Gonzalez

    *Corresponding author: Efrain H. Gonzalez 
Abstract / Introduction Full Text(HTML) Figure(11) / Table(2) Related Papers Cited by
  • Dynamic mode decomposition (DMD) has become a common technique for constructing surrogate models for dynamical systems from observed system states. The Occupation Kernel DMD (OKDMD) method proposed in (Rosenfeld et al., 2022) and (Rosenfeld et al., 2024) is a Liouville operator based method that builds surrogate models from system state trajectories. This paper proposes an extension of OKDMD to the case when the system states are observed in a streaming fashion, i.e., only a small fraction of the state trajectory is available at a given time. The developed method, Streaming Occupation Kernel DMD (StOKeDMD), accommodates the streaming data input by leveraging properties of specific choices of kernel functions and occupation kernels. We apply the StoKeDMD method as a compression method for streaming data, analyze the memory complexity, and demonstrate the performance of StoKeDMD in the compression of streaming data generated from a Lorenz system and a fluid flow simulation.

    Mathematics Subject Classification: 46E22, 37Mxx.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Figure 1A plots 12 trajectories from the Lorenz system (51) over the interval $ [0, 0.1]$. Figures 1B and 1C show a reconstruction of these trajectories using the StOKeDMD algorithm

    Figure 2.  Figure 2A shows the percent error between Figure 1A and Figure 1B. Figure 2B shows the percent error between 1A and Figure 1C. For reference, the percent error for reconstructing the $ 12 $ trajectories using offline OKDMD is displayed in Figure 2C

    Figure 3.  Figure 3A shows an example of the $ 12 $ Lorenz trajectories perturbed by noise. Figures 3B and 3C show the reconstuctions of the trajectories using a StOKeDMD model constructed from the data in Figure 3A

    Figure 4.  Figures 4A and 4B show the average percent error between the $ 1000 $ systems and the $ 12 $ trajectories in 1A using a StOKeDMD model constructed from the data

    Figure 5.  Figure 5A plots the $ 12 $ reconstructed trajectories from the Lorenz system (51) over the interval $ [0, 0.1] $ based of the model obtained from the original DMD algorithm. Figure 5B shows the percent error between 1A and 5A

    Figure 6.  Figure 6A plots the $ 12 $ new trajectories from the Lorenz system (51) over the interval $ [0, 0.1] $. Figure 6B shows a prediction of these trajectories using the StOKeDMD model developed from the original $ 12 $ trajectories presented in Figure 1A and initial values which correspond to those of the $ 12 $ new trajectories. Figure 6C shows the prediction percent error between 6A and 6B

    Figure 7.  Figure 7A plots the reconstruction of the $ 12 $ trajectories from the Lorenz system (51) over the interval $ [0, 0.1] $ using the Hyper StOKeD algorithm. Figure 7B shows the percent error for reconstructing the $ 12 $ trajectories when using the Hyper StOKeD algorithm

    Figure 8.  Figures 8A, 8D, 8G, and 8J show the true snapshots at time $ 0.18 $, $ 1.58 $, $ 2.24 $, and $ 2.98 $, respectively. Figures 8B, 8E, 8H, and 8K show the reconstruction of the snapshots at time $ 0.18 $, $ 1.58 $, $ 2.24 $, and $ 2.98 $, using the DMD method. Figures 8C, 8F, 8I, and 8L show the reconstruction of the snapshots at time $ 0.18 $, $ 1.58 $, $ 2.24 $, and $ 2.98 $ using the StOKeDMD method

    Figure 9.  Figures 9A and 9B show the percent error between the true trajectory represented by $ {\mathbf A} $ and the trajectories generated by using a StOKeDMD model constructed from data set $ {\mathbf B} $ and data set $ {\mathbf C} $, respectively

    Figure 10.  Figures 10A and 10B show the average percent error between the true trajectory represented by $ {\mathbf A} $ and the trajectories generated by using a StOKeDMD model constructed from data set $ {\mathbf B} $ and data set $ {\mathbf C} $, respectively

    Figure 11.  Figure 11A displays the values obtained from the Gaussian RBF kernel as well as its approximations over the points on the selected grid. Figure 11B shows the percent error obtained as a result of approximating the Gaussian RBF kernel with a $ 3^{rd} $ and $ 4^{th} $ degree Hermite expansion

    Table 1.  This table displays the state dimension, number of trajectories, and length of each trajectory found in the three data sets that were used for Experiment $ 7 $

    Experiment $ 7 $ Data Sets
    Data Set State Dimension Trajectory Length # of Trajectories
    $ {\mathbf A} $ $ 16000 $ $ 101 $ $ 100 $
    $ {\mathbf B} $ $ 16000 $ $ 11 $ $ 100 $
    $ {\mathbf C} $ $ 16000 $ $ 6 $ $ 100 $
     | Show Table
    DownLoad: CSV

    Table 2.  In the above table, memory requirements refers to the number of double precision elements that must be stored in memory. Additionally the table lists the memory requirements associated with the algorithms used in each experiment as well as the compression ratio associated with using any of the listed algorithms. In the case of Experiment $ 7 $ the inequality is indicative of the fact that several data sets were tested whereas in the case of Experiments $ 1 $, $ 2 $, and $ 4 $ the inequality is indicative of the fact that the algorithm was tested with two Hermite expansions of different degrees. The final row of the table shows the offline computational complexity for each algorithm. An "or" statement is used to address the potential scenario where $ \hat L $ or $ W $ is larger than the number of trajectories, $ M $. In the case of OKDMD, it is possible for $ S \times N^2 $ to be larger than $ M^3 $

    Comparison of Working Memory Requirements For Each Experiment
    Experiments OKDMD Requirement StOKeDMD Requirement Hyper StOKeD Requirement Compression Ratio
    $ 1 $, $ 2 $, & $ 4 $ $ 3636 $ $ \leq 876 $ $ \sim 18.94\text{x} $
    $ 6 $ $ 151 \times 89351 $ $ 588 \times 89351 $ $ \sim 1.03\text{x} $
    $ 7 $ $ \geq 501 \times 16000 $ $ 400 \times 16000 $ $ \geq 4.97\text{x} $
    $ 5 $ $ 3636 $ $ 70488 $ $ \sim 18.94\text{x} $
    Computational Complexity $ O(M^3) $ or $ O(S\times N^2) $ $ O(M^3) $ or $ O(\hat L \times M^2) $ $ O(M^3) $ or $ O(W\times M^2) $
     | Show Table
    DownLoad: CSV
  • [1] B. Babcock, S. Babu, M. Datar, R. Motwani and J. Widom, Models and issues in data stream systems, In Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, (2002), 1-16.
    [2] A. BifetR. GavaldaG. Holmes and  B. PfahringerMachine Learning for Data Streams: With Practical Examples in MOA, MIT press, 2023. 
    [3] C.-H. Chang and C.-W. Ha, On eigenvalues of differentiable positive definite kernels, Integral Equations and Operator Theory, 33 (1999), 1-7.  doi: 10.1007/BF01203078.
    [4] A. de Cheveigné and I. Nelken, Filters: When, why, and how (not) to use them, Neuron, 102 (2019), 280-293. 
    [5] G. E. Fasshauer and M. J McCourt, Stable evaluation of Gaussian radial basis function interpolants, SIAM Journal on Scientific Computing, 34 (2012), 737-762.  doi: 10.1137/110824784.
    [6] M. S. HematiM. O. Williams and C. W. Rowley, Dynamic mode decomposition for large and streaming datasets, Physics of Fluids, 26 (2014), 111701.  doi: 10.1063/1.4901016.
    [7] J. N. Kutz, S. L. Brunton, B. W. Brunton and J. L. Proctor, Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, SIAM, 2016.
    [8] S. Muthukumaraswamy, High-frequency brain activity and muscle artifacts in meg/eeg: A review and recommendations, Frontiers in Human Neuroscience, 7 (2013).  doi: 10.3389/fnhum.2013.00138.
    [9] J. T. OverpeckG. A. MeehlS. Bony and David. R. Easterling, Climate data challenges in the 21st century, Science, 331 (2011), 700-702.  doi: 10.1126/science.1197869.
    [10] V. I. Paulsen and  M. RaghupathiAn Introduction to the Theory of Reproducing Kernel Hilbert Spaces, volume 152, Cambridge University Press, 2016. 
    [11] S. Pendergrass, S. L. Brunton, J. N. Kutz, N. B. Erichson and T. Askham, Dynamic mode decomposition for background modeling, In 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), (2017), 1862-1870.
    [12] F. Riesz and B. S. Nagy, Functional Analysis, Dover Books on Mathematics. Dover Publications, 2012.
    [13] J. A. RosenfeldR. KamalapurkarL. Gruss and T. T. Johnson, Dynamic mode decomposition for continuous time systems with the Liouville operator, Journal of Nonlinear Science, 32 (2022), 1-30.  doi: 10.1007/s00332-021-09746-w.
    [14] J. A. RosenfeldB. P. RussoR. Kamalapurkar and T. T. Johnson, The occupation kernel method for nonlinear system identification, SIAM Journal on Control and Optimization, 62 (2024), 1643-1668.  doi: 10.1137/19M127029X.
    [15] P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, Journal of Fluid Mechanics, 656 (2010), 5-28.  doi: 10.1017/S0022112010001217.
    [16] D. V. Schroeder, Fluid dynamics simulation, https://physics.weber.edu/schroeder/fluids/.
    [17] N. Shklov, Simpson's rule for unequally spaced ordinates, The American Mathematical Monthly, 67 (1960), 1022-1023.  doi: 10.2307/2309244.
    [18] J. Smagorinsky, General circulation experiments with the primitive equations: Ⅰ. the basic experiment, Monthly Weather Review, 91 (1963), 99-164. 
    [19] I. Steinwart and A. Christmann, Support Vector Machines, Springer Science & Business Media, 2008.
    [20] M. O. WilliamsI. G. Kevrekidis and C. W. Rowley, A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition, Journal of Nonlinear Science, 25 (2015), 1307-1346. 
  • 加载中

Figures(11)

Tables(2)

SHARE

Article Metrics

HTML views(468) PDF downloads(88) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return