Experiment $ 7 $ Data Sets | |||
Data Set | State Dimension | Trajectory Length | # of Trajectories |
$ {\mathbf A} $ | $ 16000 $ | $ 101 $ | $ 100 $ |
$ {\mathbf B} $ | $ 16000 $ | $ 11 $ | $ 100 $ |
$ {\mathbf C} $ | $ 16000 $ | $ 6 $ | $ 100 $ |
Dynamic mode decomposition (DMD) has become a common technique for constructing surrogate models for dynamical systems from observed system states. The Occupation Kernel DMD (OKDMD) method proposed in (Rosenfeld et al., 2022) and (Rosenfeld et al., 2024) is a Liouville operator based method that builds surrogate models from system state trajectories. This paper proposes an extension of OKDMD to the case when the system states are observed in a streaming fashion, i.e., only a small fraction of the state trajectory is available at a given time. The developed method, Streaming Occupation Kernel DMD (StOKeDMD), accommodates the streaming data input by leveraging properties of specific choices of kernel functions and occupation kernels. We apply the StoKeDMD method as a compression method for streaming data, analyze the memory complexity, and demonstrate the performance of StoKeDMD in the compression of streaming data generated from a Lorenz system and a fluid flow simulation.
Citation: |
Figure 6. Figure 6A plots the $ 12 $ new trajectories from the Lorenz system (51) over the interval $ [0, 0.1] $. Figure 6B shows a prediction of these trajectories using the StOKeDMD model developed from the original $ 12 $ trajectories presented in Figure 1A and initial values which correspond to those of the $ 12 $ new trajectories. Figure 6C shows the prediction percent error between 6A and 6B
Figure 8. Figures 8A, 8D, 8G, and 8J show the true snapshots at time $ 0.18 $, $ 1.58 $, $ 2.24 $, and $ 2.98 $, respectively. Figures 8B, 8E, 8H, and 8K show the reconstruction of the snapshots at time $ 0.18 $, $ 1.58 $, $ 2.24 $, and $ 2.98 $, using the DMD method. Figures 8C, 8F, 8I, and 8L show the reconstruction of the snapshots at time $ 0.18 $, $ 1.58 $, $ 2.24 $, and $ 2.98 $ using the StOKeDMD method
Figure 11. Figure 11A displays the values obtained from the Gaussian RBF kernel as well as its approximations over the points on the selected grid. Figure 11B shows the percent error obtained as a result of approximating the Gaussian RBF kernel with a $ 3^{rd} $ and $ 4^{th} $ degree Hermite expansion
Table 1.
This table displays the state dimension, number of trajectories, and length of each trajectory found in the three data sets that were used for Experiment
Experiment $ 7 $ Data Sets | |||
Data Set | State Dimension | Trajectory Length | # of Trajectories |
$ {\mathbf A} $ | $ 16000 $ | $ 101 $ | $ 100 $ |
$ {\mathbf B} $ | $ 16000 $ | $ 11 $ | $ 100 $ |
$ {\mathbf C} $ | $ 16000 $ | $ 6 $ | $ 100 $ |
Table 2.
In the above table, memory requirements refers to the number of double precision elements that must be stored in memory. Additionally the table lists the memory requirements associated with the algorithms used in each experiment as well as the compression ratio associated with using any of the listed algorithms. In the case of Experiment
Comparison of Working Memory Requirements For Each Experiment | ||||
Experiments | OKDMD Requirement | StOKeDMD Requirement | Hyper StOKeD Requirement | Compression Ratio |
$ 1 $, $ 2 $, & $ 4 $ | $ 3636 $ | $ \leq 876 $ | $ \sim 18.94\text{x} $ | |
$ 6 $ | $ 151 \times 89351 $ | $ 588 \times 89351 $ | $ \sim 1.03\text{x} $ | |
$ 7 $ | $ \geq 501 \times 16000 $ | $ 400 \times 16000 $ | $ \geq 4.97\text{x} $ | |
$ 5 $ | $ 3636 $ | $ 70488 $ | $ \sim 18.94\text{x} $ | |
Computational Complexity | $ O(M^3) $ or $ O(S\times N^2) $ | $ O(M^3) $ or $ O(\hat L \times M^2) $ | $ O(M^3) $ or $ O(W\times M^2) $ |
[1] |
B. Babcock, S. Babu, M. Datar, R. Motwani and J. Widom, Models and issues in data stream systems, In Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, (2002), 1-16.
![]() |
[2] |
A. Bifet, R. Gavalda, G. Holmes and B. Pfahringer, Machine Learning for Data Streams: With Practical Examples in MOA, MIT press, 2023.
![]() |
[3] |
C.-H. Chang and C.-W. Ha, On eigenvalues of differentiable positive definite kernels, Integral Equations and Operator Theory, 33 (1999), 1-7.
doi: 10.1007/BF01203078.![]() ![]() ![]() |
[4] |
A. de Cheveigné and I. Nelken, Filters: When, why, and how (not) to use them, Neuron, 102 (2019), 280-293.
![]() |
[5] |
G. E. Fasshauer and M. J McCourt, Stable evaluation of Gaussian radial basis function interpolants, SIAM Journal on Scientific Computing, 34 (2012), 737-762.
doi: 10.1137/110824784.![]() ![]() ![]() |
[6] |
M. S. Hemati, M. O. Williams and C. W. Rowley, Dynamic mode decomposition for large and streaming datasets, Physics of Fluids, 26 (2014), 111701.
doi: 10.1063/1.4901016.![]() ![]() |
[7] |
J. N. Kutz, S. L. Brunton, B. W. Brunton and J. L. Proctor, Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, SIAM, 2016.
![]() ![]() |
[8] |
S. Muthukumaraswamy, High-frequency brain activity and muscle artifacts in meg/eeg: A review and recommendations, Frontiers in Human Neuroscience, 7 (2013).
doi: 10.3389/fnhum.2013.00138.![]() ![]() |
[9] |
J. T. Overpeck, G. A. Meehl, S. Bony and David. R. Easterling, Climate data challenges in the 21st century, Science, 331 (2011), 700-702.
doi: 10.1126/science.1197869.![]() ![]() |
[10] |
V. I. Paulsen and M. Raghupathi, An Introduction to the Theory of Reproducing Kernel Hilbert Spaces, ![]() ![]() |
[11] |
S. Pendergrass, S. L. Brunton, J. N. Kutz, N. B. Erichson and T. Askham, Dynamic mode decomposition for background modeling, In 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), (2017), 1862-1870.
![]() |
[12] |
F. Riesz and B. S. Nagy, Functional Analysis, Dover Books on Mathematics. Dover Publications, 2012.
![]() ![]() |
[13] |
J. A. Rosenfeld, R. Kamalapurkar, L. Gruss and T. T. Johnson, Dynamic mode decomposition for continuous time systems with the Liouville operator, Journal of Nonlinear Science, 32 (2022), 1-30.
doi: 10.1007/s00332-021-09746-w.![]() ![]() ![]() |
[14] |
J. A. Rosenfeld, B. P. Russo, R. Kamalapurkar and T. T. Johnson, The occupation kernel method for nonlinear system identification, SIAM Journal on Control and Optimization, 62 (2024), 1643-1668.
doi: 10.1137/19M127029X.![]() ![]() ![]() |
[15] |
P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, Journal of Fluid Mechanics, 656 (2010), 5-28.
doi: 10.1017/S0022112010001217.![]() ![]() ![]() |
[16] |
D. V. Schroeder, Fluid dynamics simulation, https://physics.weber.edu/schroeder/fluids/.
![]() |
[17] |
N. Shklov, Simpson's rule for unequally spaced ordinates, The American Mathematical Monthly, 67 (1960), 1022-1023.
doi: 10.2307/2309244.![]() ![]() ![]() |
[18] |
J. Smagorinsky, General circulation experiments with the primitive equations: Ⅰ. the basic experiment, Monthly Weather Review, 91 (1963), 99-164.
![]() |
[19] |
I. Steinwart and A. Christmann, Support Vector Machines, Springer Science & Business Media, 2008.
![]() ![]() |
[20] |
M. O. Williams, I. G. Kevrekidis and C. W. Rowley, A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition, Journal of Nonlinear Science, 25 (2015), 1307-1346.
![]() ![]() |
Figure 1A plots 12 trajectories from the Lorenz system (51) over the interval
Figure 2A shows the percent error between Figure 1A and Figure 1B. Figure 2B shows the percent error between 1A and Figure 1C. For reference, the percent error for reconstructing the
Figure 3A shows an example of the
Figures 4A and 4B show the average percent error between the
Figure 5A plots the
Figure 6A plots the
Figure 7A plots the reconstruction of the
Figures 8A, 8D, 8G, and 8J show the true snapshots at time
Figures 9A and 9B show the percent error between the true trajectory represented by
Figures 10A and 10B show the average percent error between the true trajectory represented by
Figure 11A displays the values obtained from the Gaussian RBF kernel as well as its approximations over the points on the selected grid. Figure 11B shows the percent error obtained as a result of approximating the Gaussian RBF kernel with a