[1]
|
J. Adler, H. Kohr and O. Öktem, Odl 0.6.0, 2017.
|
[2]
|
J. Adler and O. Öktem, Solving ill-posed inverse problems using iterative deep neural networks, Inverse Problems, 33 (2017), 124007.
doi: 10.1088/1361-6420/aa9581.
|
[3]
|
J. Adler and O. Öktem, Learned primal-dual reconstruction, IEEE Transactions on Medical Imaging, 37 (2018), 1322-1332.
doi: 10.1109/TMI.2018.2799231.
|
[4]
|
S. G. Armato Ⅲ, G. McLennan, L. Bidaut, M. F. McNitt-Gray, C. R. Meyer, A. P. Reeves, B. Zhao, D. R. Aberle, C. I. Henschke, E. A. Hoffman, et al. The lung image database consortium (lidc) and image database resource initiative (idri): A completed reference database of lung nodules on ct scans, Medical physics, 38 (2011), 915-931.
doi: 10.1118/1.3528204.
|
[5]
|
S. Arridge, P. Maass, O. Öktem and C.-B. Schönlieb, Solving inverse problems using data-driven models, Acta Numerica, 28 (2019), 1-174.
doi: 10.1017/S0962492919000059.
|
[6]
|
A. Barbu, Training an active random field for real-time image denoising, IEEE Transactions on Image Processing, 18 (2009), 2451-2462.
doi: 10.1109/TIP.2009.2028254.
|
[7]
|
S. Barutcu, S. Aslan, A. K. Katsaggelos and D. Gürsoy, Limited-angle computed tomography with deep image and physics priors, Scientific Reports, 11 (2021), 17740.
|
[8]
|
A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences, 2 (2009), 183-202.
doi: 10.1137/080716542.
|
[9]
|
M. Beister, D. Kolditz and W. A. Kalender, Iterative reconstruction methods in X-ray CT, Physica Medica, 28 (2012), 94-108.
doi: 10.1016/j.ejmp.2012.01.003.
|
[10]
|
M. Benning and M. Burger, Modern regularization methods for inverse problems, Acta Numerica, 27 (2018), 1-111.
|
[11]
|
A. Biguri, M. Dosanjh, S. Hancock and M. Soleimani, Tigre: A matlab-gpu toolbox for cbct image reconstruction, Biomedical Physics and Engineering Express, 2 (2016), 055010.
doi: 10.1088/2057-1976/2/5/055010.
|
[12]
|
A. Biguri, R. Lindroos, R. Bryll, H. Towsyfyan, H. Deyhle, I. El khalil Harrane, R. Boardman, M. Mavrogordato, M. Dosanjh, S. Hancock, et al., Arbitrarily large tomography with iterative algorithms on multiple gpus using the tigre toolbox, Journal of Parallel and Distributed Computing, 146 (2020), 52-63.
|
[13]
|
A. Biguri and S. Mukherjee, Advancing the frontiers of deep learning for low-dose 3d cone-beam computed tomography (ct) reconstruction, In 2024 IEEE International Conference on Acoustics, Speech and Signal Processing Workshops (ICASSPW), (2024), 81-82.
|
[14]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends® in Machine learning, 3 (2011), 1-122.
|
[15]
|
S. L. Brady, A. T. Trout, E. Somasundaram, C. G. Anton, Y. Li and J. R. Dillman, Improving image quality and reducing radiation dose for pediatric ct by using deep learning reconstruction, Radiology, 298 (2021), 180-188.
doi: 10.1148/radiol.2020202317.
|
[16]
|
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), 120-145.
doi: 10.1007/s10851-010-0251-1.
|
[17]
|
G. Chen and D. Needell, Compressed sensing and dictionary learning, Finite Frame Theory: A Complete Introduction to Overcompleteness, 73 (2016), 201-241.
|
[18]
|
H. Chen, Y. Zhang, M. K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou and G. Wang, Low-dose CT with a residual encoder-decoder convolutional neural network, IEEE Transactions on Medical Imaging, 36 (2017), 2524-2535.
doi: 10.1109/TMI.2017.2715284.
|
[19]
|
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and F. F. Li, ImageNet: A large-scale hierarchical image database, In 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, (2009), 248-255.
|
[20]
|
A. G. Dimakis, A. Bora, D. Van Veen, A. Jalal, S. Vishwanath and E. Price, Deep generative models and inverse problems, Mathematical Aspects of Deep Learning, (2022), 400-421.
|
[21]
|
A. Ebner and M. Haltmeier, Plug-and-play image reconstruction is a convergent regularization method, IEEE Transactions on Image Processing, (2024).
|
[22]
|
H. W. Engl, M. Hanke-Bourgeois and A. Neubauer, Regularization of Inverse Problems, Number 375 in Mathematics and Its Applications < Dordrecht > . Kluwer Acad. Publ, Dordrecht, 2000.
|
[23]
|
J. Frikel and E. T. Quinto, Characterization and reduction of artifacts in limited angle tomography, Inverse Problems, 29 (2013), 125007.
doi: 10.1088/0266-5611/29/12/125007.
|
[24]
|
L. Fu and B. De Man, Deep learning tomographic reconstruction through hierarchical decomposition of domain transforms, Visual Computing for Industry, Biomedicine and Art, 5 (2022), 30.
|
[25]
|
M. Genzel, J. Macdonald and M. März, Solving inverse problems with deep neural networks – robustness included?, IEEE Transactions on Pattern Analysis and Machine Intelligence, 45 (2022), 1119-1134.
|
[26]
|
D. T. Ginat and R. Gupta, Advances in computed tomography imaging technology, Annual Review of Biomedical Engineering, 16 (2014), 431-453.
doi: 10.1146/annurev-bioeng-121813-113601.
|
[27]
|
B. Girod, Psychovisual aspects of image communication, Signal Processing, 28 (1992), 239-251.
doi: 10.1016/0165-1684(92)90042-U.
|
[28]
|
H. Gong, L. Ren, S. S. Hsieh, C. H. McCollough and L. Yu, Deep learning enabled ultra-fast-pitch acquisition in clinical x-ray computed tomography, Medical Physics, 48 (2021), 5712-5726.
|
[29]
|
K. Gregor and Y. LeCun, Learning fast approximations of sparse coding, In Proceedings of the 27th International Conference on Machine Learning, (2010), 399-406.
|
[30]
|
H. Gupta, K.-H. Jin, H. Q. Nguyen, M. T. McCann and M. Unser, CNN-based projected gradient descent for consistent CT image reconstruction, IEEE Transactions on Medical Imaging, 37 (2018), 1440-1453.
|
[31]
|
A. Habring and M. Holler, Neural-network-based regularization methods for inverse problems in imaging, GAMM-Mitteilungen, 47 (2024), e202470004.
|
[32]
|
Y. Han and J.-C. Ye, Framing U-Net via deep convolutional framelets: Application to sparse-view CT, IEEE Transactions on Medical Imaging, 37 (2018), 1418-1429.
doi: 10.1109/TMI.2018.2823768.
|
[33]
|
P. C. Hansen, J. Jørgensen and W. R. B. Lionheart, Computed Tomography: Algorithms, Insight and Just Enough Theory, SIAM, 2021.
|
[34]
|
A. Hauptmann, S. Mukherjee, C.-B. Schönlieb and F. Sherry, Convergent Regularization in Inverse Problems and Linear Plug-and-Play Denoisers, Foundations of Computational Mathematics, 2024.
|
[35]
|
A. A. Hendriksen, D. Schut, W. J. Palenstijn, N. Viganó, J. Kim, D. M. Pelt, T. Van Leeuwen and K. J. Batenburg, Tomosipo: Fast, flexible and convenient 3d tomography for complex scanning geometries in python, Optics Express, 29 (2021), 40494-40513.
doi: 10.1364/OE.439909.
|
[36]
|
J. Hsieh and T. Flohr, Computed tomography recent history and future perspectives, Journal of Medical Imaging, 8 (2021), 052109-052109.
|
[37]
|
S. Hurault, A. Leclaire and N. Papadakis, Gradient step denoiser for convergent plug-and-play, In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022, OpenReview.net, 2022.
|
[38]
|
K. H. Jin, M. T. McCann, E. Froustey and M. Unser, Deep convolutional neural network for inverse problems in imaging, IEEE Transactions on Image Processing, 26 (2017), 4509-4522.
doi: 10.1109/TIP.2017.2713099.
|
[39]
|
P. M. Joseph and R. A. Schulz, View sampling requirements in fan beam computed tomography, Medical Physics, 7 (1980), 692-702.
doi: 10.1118/1.594723.
|
[40]
|
U. S. Kamilov, C. A. Bouman, G. T. Buzzard and B. Wohlberg, Plug-and-play methods for integrating physical and learned models in computational imaging: Theory, algorithms and applications, IEEE Signal Processing Magazine, 40 (2023), 85-97.
doi: 10.1109/MSP.2022.3199595.
|
[41]
|
E. Kang, J. Min and J. C. Ye, A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction, Medical Physics, 44 (2017), e360-e375.
|
[42]
|
A. Khorashadizadeh, V. Debarnot, T. Liu and I. Dokmanić, Glimpse: Generalized local imaging with mlps, preprint, arXiv: 2401.00816, 2024.
|
[43]
|
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, preprint, arXiv: 1412.6980, 2014.
|
[44]
|
M. B. Kiss, S. B. Coban, K. J. Batenburg, T. van Leeuwen and F. Lucka, 2DeteCT - A large 2D expandable, trainable, experimental Computed Tomography dataset for machine learning: Slices 1-1,000, Zenodo, 2023.
|
[45]
|
M. Kiss, S. Coban, K. Batenburg, T. van Leeuwen and F. Lucka, 2DeteCT - A large 2D expandable, trainable, experimental Computed Tomography dataset for machine learning, Scientific Data, 10 (2023).
doi: 10.1038/s41597-023-02484-6.
|
[46]
|
F. Knoll, J. Zbontar, A. Sriram, M. J. Muckley, M. Bruno, A. Defazio, M. Parente, K. J. Geras, J. Katsnelson, H. Chandarana, Z. Zhang, M. Drozdzalv, A. Romero, M. Rabbat, P. Vincent, J. Pinkerton, D. Wang, N. Yakubova, E. Owens, C. L. Zitnick, M. P. Recht, D. K. Sodickson and Y. W. Lui, fastMRI: A publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning, Radiology: Artificial Intelligence, 2 (2020), e190007.
doi: 10.1148/ryai.2020190007.
|
[47]
|
E. Kobler, A. Effland, K. Kunisch and T. Pock, Total deep variation for linear inverse problems, In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2020), 7549-7558.
|
[48]
|
A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from tiny images, 2009.
|
[49]
|
Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature, 521 (2015), 436-444.
doi: 10.1038/nature14539.
|
[50]
|
Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86 (1998), 2278-2324.
doi: 10.1109/5.726791.
|
[51]
|
J. Leuschner, M. Schmidt, D. O. Baguer and P. Maass, LoDoPaB-CT, a benchmark dataset for low-dose computed tomography reconstruction, Scientific Data, 8 (2021), 1-12.
|
[52]
|
J. Leuschner, M. Schmidt, P. S. Ganguly, V. Andriiashen, S. B. Coban, A. Denker, D. Bauer, A. Hadjifaradji, K. J. Batenburg, P. Maass, et al. Quantitative comparison of deep learningbased image reconstruction methods for low-dose and sparse-angle CT applications, Journal of Imaging, 7 (2021), 44.
|
[53]
|
H. Li, J. Schwab, S. Antholzer and M. Haltmeier, NETT: Solving inverse problems with deep neural networks, Inverse Problems, 36 (2020), 065005.
doi: 10.1088/1361-6420/ab6d57.
|
[54]
|
J. Liu, R. Anirudh, J. J. Thiagarajan, S. He, K. A. Mohan, U. S. Kamilov and H. Kim, Dolce: A model-based probabilistic diffusion framework for limited-angle ct reconstruction, In Proceedings of the IEEE/CVF International Conference on Computer Vision, (2023), 10498-10508.
|
[55]
|
S. Lunz, O. Öktem and C.-B. Schönlieb, Adversarial regularizers in inverse problems, In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, 31 (2018).
|
[56]
|
C. McCollough, TU-FG-207A-04: Overview of the low dose CT grand challenge, Medical Physics, 43 (2016), 3759-3760.
doi: 10.1118/1.4957555.
|
[57]
|
T. R. Moen, B. Chen, D. R. Holmes Ⅲ, X. Duan, Z. Yu, L. Yu, S. Leng, J. G. Fletcher and C. H. McCollough, Low-dose ct image and projection dataset, Medical Physics, 48 (2021), 902-911.
doi: 10.1002/mp.14614.
|
[58]
|
V. Monga, Y. Li and Y. C. Eldar, Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing, IEEE Signal Processing Magazine, 38 (2021), 18-44.
doi: 10.1109/MSP.2020.3016905.
|
[59]
|
S. Mukherjee, S. Dittmer, Z. Shumaylov, S. Lunz, O. Öktem and C.-B. Schönlieb, Learned convex regularizers for inverse problems, preprint, arXiv: 2008.02839, 2020.
|
[60]
|
S. Mukherjee, S. Dittmer, Z. Shumaylov, S. Lunz, O. Öktem and C.-B. Schönlieb, Data-driven convex regularizers for inverse problems, In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2024), 13386-13390.
|
[61]
|
S. Mukherjee, A. Hauptmann, O. Öktem, M. Pereyra and C.-B. Schönlieb, Learned reconstruction methods with convergence guarantees: A survey of concepts and applications, IEEE Signal Processing Magazine, 40 (2023), 164-182.
doi: 10.1109/MSP.2022.3207451.
|
[62]
|
Y. E. Nesterov, A method of solving a convex programming problem with convergence rate $O(k^2)$, In Doklady Akademii Nauk, 269, (1983), 543-547.
|
[63]
|
S. I. Nikolenko, Synthetic-to-real domain adaptation and refinement, In Synthetic Data for Deep Learning, (2021), 235-268.
|
[64]
|
W. J. Palenstijn, K. J. Batenburg and J. Sijbers, Performance improvements for iterative electron tomography reconstruction using graphics processing units (gpus), Journal of Structural Biology, 176 (2011), 250-253.
doi: 10.1016/j.jsb.2011.07.017.
|
[65]
|
H. S. Park, S. M. Lee, H. P. Kim, J. K. Seo and Y. E. Chung, CT sinogram-consistency learning for metal-induced beam hardening correction, Medical Physics, 45 (2018), 5376-5384.
doi: 10.1002/mp.13199.
|
[66]
|
J. A. Patton and T. G. Turkington, SPECT/CT physical principles and attenuation correction, Journal of Nuclear Medicine Technology, 36 (2008), 1-10.
doi: 10.2967/jnmt.107.046839.
|
[67]
|
D. M. Pelt and J. A. Sethian, A mixed-scale dense convolutional neural network for image analysis, Proceedings of the National Academy of Sciences, 115 (2018), 254-259.
doi: 10.1073/pnas.1715832114.
|
[68]
|
S. Ravishankar, J. C. Ye and J. A. Fessler, Image reconstruction: From sparsity to data-adaptive methods and machine learning, Proceedings of the IEEE, 108 (2019), 86-109.
doi: 10.1109/JPROC.2019.2936204.
|
[69]
|
J. Reid, J. Gamberoni, F. Dong and W. Davros, Optimization of kvp and mas for pediatric low-dose simulated abdominal ct: Is it best to base parameter selection on object circumference?, American Journal of Roentgenology, 195 (2010), 1015-1020.
doi: 10.2214/AJR.09.3862.
|
[70]
|
E. L. Ritman, Current status of developments and applications of micro-CT, Annual Review of Biomedical Engineering, 13 (2011), 531-552.
doi: 10.1146/annurev-bioeng-071910-124717.
|
[71]
|
O. Ronneberger, P. Fischer and T. Brox, U-net: Convolutional networks for biomedical image segmentation, In Medical image computing and computer-assisted intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, proceedings, part Ⅲ 18, (2015), 234-241.
|
[72]
|
H. D. Sarkissian, F. Lucka, M. van Eijnatten, G. Colacicco, S. Coban and K. J. Batenburg, A cone-beam X-ray computed tomography data collection designed for machine learning, Scientific Data, 6 (2019), 215.
|
[73]
|
O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational Methods in Imaging, Springer, 2009.
|
[74]
|
H. Shan, A. Padole, F. Homayounieh, U. Kruger, R. D. Khera, C. Nitiwarangkul, M. K. Kalra and G. Wang, Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction, Nature Machine Intelligence, 1 (2019), 269-276.
|
[75]
|
H. R. Sheikh, M. F. Sabir and A. C. Bovik, A statistical evaluation of recent full reference image quality assessment algorithms, IEEE Transactions on image Processing, 15 (2006), 3440-3451.
|
[76]
|
Z. Shumaylov, J. Budd, S. Mukherjee and C.-B. Schönlieb, Weakly convex regularisers for inverse problems: Convergence of critical points and primal-dual optimisation, 2024, arXiv: 2402.01052.
|
[77]
|
Y. Song, L. Shen, L. Xing and S. Ermon, Solving inverse problems in medical imaging with score-based generative models, In International Conference on Learning Representations, 2022, https://openreview.net/forum?id = vaRCHVj0uGI.
|
[78]
|
J. Tachella, D. Chen, S. Hurault, M. Terris and A. Wang, DeepInverse: A deep learning framework for inverse problems in imaging, URL, 2023, https://github.com/deepinv/deepinv.
|
[79]
|
W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. De Beenhouwer, K. J. Batenburg and J. Sijbers, Fast and flexible x-ray tomography using the astra toolbox, Opt. Express, 24 (2016), 25129-2514.
doi: 10.1364/OE.24.025129.
|
[80]
|
W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg and J. Sijbers, The astra toolbox: A platform for advanced algorithm development in electron tomography, Ultramicroscopy, 157 (2015), 35-47.
doi: 10.1016/j.ultramic.2015.05.002.
|
[81]
|
E. Van de Casteele, D. V. Dyck, J. Sijbers and E. Raman, An energy-based beam hardening model in tomography, Physics in Medicine and Biology, 47 (2002), 4181.
doi: 10.1088/0031-9155/47/23/305.
|
[82]
|
S. V. Venkatakrishnan, C. A. Bouman and B. Wohlberg, Plug-and-play priors for model based reconstruction, In 2013 IEEE Global Conference on Signal and Information Processing, (2013), 945-948.
|
[83]
|
A. K. Venkataramanan, C. Wu, A. C. Bovik, I. Katsavounidis and Z. Shahid, A hitchhiker's guide to structural similarity, IEEE Access, 9 (2021), 28872-28896.
doi: 10.1109/ACCESS.2021.3056504.
|
[84]
|
D. Wang, F. Fan, Z. Wu, R. Liu, F. Wang and H. Yu, Ctformer: Convolution-free token2token dilated vision transformer for low-dose ct denoising, Physics in Medicine and Biology, 68 (2023), 065012.
|
[85]
|
G. Wang, J. C. Ye, K. Mueller and J. A. Fessler, Image reconstruction is a new frontier of machine learning, IEEE Transactions on Medical Imaging, 37 (2018), 1289-1296.
doi: 10.1109/TMI.2018.2833635.
|
[86]
|
G. Wang, H. Yu and B. De Man, An outlook on x-ray CT research and development, Medical Physics, 35 (2008), 1051-1064.
doi: 10.1118/1.2836950.
|
[87]
|
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing, 13 (2004), 600-612.
|
[88]
|
G. Webber and A. J. Reader, Diffusion models for medical image reconstruction, BJR| Artificial Intelligence, 1 (2024).
|
[89]
|
L. M. Weber, W. Saelens, R. Cannoodt, C. Soneson, A. Hapfelmeier, P. P. Gardner, A.-L. Boulesteix, Y. Saeys and M. D. Robinson, Essential guidelines for computational method benchmarking, Genome Biology, 20 (2019), 1-12.
|
[90]
|
M. Weiss, N. Brierley, M. von Schmid and T. Meisen, Simulation study: Data-driven material decomposition in industrial X-ray computed tomography, NDT, 2 (2024), 1-15.
doi: 10.3390/ndt2010001.
|
[91]
|
T. Würfl, M. Hoffmann, V. Christlein, K. Breininger, Y. Huang, M. Unberath and A. K. Maier, Deep learning computed tomography: Learning projection-domain weights from image domain in limited angle problems, IEEE Transactions on Medical Imaging, 37 (2018), 1454-1463.
doi: 10.1109/TMI.2018.2833499.
|
[92]
|
Q. Yang, P. Yan, Y. Zhang, H. Yu, Y. Shi, X. Mou, M. K. Kalra, Y. Zhang, L. Sun and G. Wang, Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss, IEEE Transactions on Medical Imaging, 37 (2018), 1348-1357.
doi: 10.1109/TMI.2018.2827462.
|
[93]
|
J. C. Ye, Y. C. Eldar and M. A Unser, Deep Learning for Biomedical Image Reconstruction, Cambridge University Press, 2023.
|
[94]
|
H.-M. Zhang and B. Dong, A review on deep learning in medical image reconstruction, Journal of the Operations Research Society of China, 8 (2020), 311-340.
doi: 10.1007/s40305-019-00287-4.
|
[95]
|
K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool and R. Timofte, Plug-and-play image restoration with deep denoiser prior, IEEE Transactions on Pattern Analysis and Machine Intelligence, 44 (2022), 6360-6376.
doi: 10.1109/TPAMI.2021.3088914.
|
[96]
|
K. Zhang, W. Zuo, Y. Chen, D. Meng and L. Zhang, Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE Transactions on Image Processing, 26 (2017), 3142-3155.
|
[97]
|
Z. Zhang, X. Liang, X. Dong, Y. Xie and G. Cao, A sparse-view CT reconstruction method based on combination of densenet and deconvolution, IEEE Transactions on Medical Imaging, 37 (2018), 1407-1417.
|
[98]
|
B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen and M. S. Rosen, Image reconstruction by domain-transform manifold learning, Nature, 555 (2018), 487-492.
doi: 10.1038/nature25988.
|