\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Benchmarking learned algorithms for computed tomography image reconstruction tasks

  • *Corresponding author: Maximilian B. Kiss

    *Corresponding author: Maximilian B. Kiss 

# These authors contributed equally to this work.

Abstract / Introduction Full Text(HTML) Figure(2) / Table(7) Related Papers Cited by
  • Computed tomography (CT) is a widely used non-invasive diagnostic method in various fields, and recent advances in deep learning have led to significant progress in CT image reconstruction. However, the lack of large-scale, open-access datasets has hindered the comparison of different types of learned methods. To address this gap, we use the 2DeteCT dataset, a real-world experimental computed tomography dataset, for benchmarking machine learning based CT image reconstruction algorithms. We categorize these methods into post-processing methods, learned/unrolled iterative methods, learned regularizer methods, and plug-and-play methods, and provide a pipeline for easy implementation and evaluation. Using key performance metrics, including SSIM and PSNR, our benchmarking results showcase the effectiveness of various algorithms on tasks such as full data reconstruction, limited-angle reconstruction, sparse-angle reconstruction, low-dose reconstruction, and beam-hardening corrected reconstruction. With this benchmarking study, we provide an evaluation of a range of algorithms representative for different categories of learned reconstruction methods on a recently published dataset of real-world experimental CT measurements. The reproducible setup of methods and CT image reconstruction tasks in an open-source toolbox enables straightforward addition and comparison of new methods later on. The toolbox also provides the option to load the 2DeteCT dataset differently for extensions to other problems and different CT reconstruction tasks.

    Mathematics Subject Classification: Primary: 68T05, 68T07; Secondary: 65R32.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  CT Image Reconstruction Tasks

    Figure 2.  Qualitative analysis of all evaluated methods for slice 182 of the test dataset in comparison to the "gold standard" iterative reference reconstruction of the 2DeteCT dataset (green box)

    Table 1.  A summary of publicly available CT datasets, supported tasks, their size, and their raw data availability. ($ \checkmark$) = possible through data generation

    Dataset CT Image Reconstruction Tasks Size (>100 samples) Raw Data
    Low-Dose Limited-Angle Sparse-Angle Beam-hardening reduction
    Mayo [56,57] $ \checkmark$ ($ \checkmark$) ($ \checkmark$) [56] / $ \checkmark$ [57]
    LoDoPaB [51] $ \checkmark$ ($ \checkmark$) ($ \checkmark$) $ \checkmark$
    ICASSP GC8 [13] $ \checkmark$ ($ \checkmark$) ($ \checkmark$) $ \checkmark$
    Walnut CBCT [72] $ \checkmark$ $ \checkmark$ $ \checkmark$
    2DeteCT [45] $ \checkmark$ $ \checkmark$ $ \checkmark$ $ \checkmark$ $ \checkmark$ $ \checkmark$
     | Show Table
    DownLoad: CSV

    Table 2.  Method Categorizations

    Article Categorization
    Zhang et al., 2020 [94] Amount of expert knowledge involved: handcrafted, hybrid approaches, mostly learned
    Ye et al., 2023 [93] Point of learned processing: pre-processing, post-processing, and raw-to-image
    Ravishankar et al., 2019 [68] Domain of application: image-domain, hybrid-domain, AUTOMAP [98], sensor-domain
    Arridge et al., 2019 [5] Methodological: Post-processing Methods, Learned / Unrolled Iterative Methods, Learned Regularizer Methods, Plug-and-Play Methods
     | Show Table
    DownLoad: CSV

    Table 3.  Summary of the acquisition parameters of the 2DeteCT dataset, adapted from [45]. The Thoreaus filter is a compound filter made of Sn 0.1mm, Cu 0.2mm, Al 0.5mm. The SOD and SDD values are based on the motor readings of the FleX-ray scanner which get translated into physical quantities and are subject to alignment errors

    Acquisition parameter Mode 1 Mode 2 Mode 3
    Tube voltage $ {90.0}\ {\rm{ kV}} $ $ {90.0}\ {\rm{ kV}} $ $ {60.0}\ {\rm{ kV}} $
    Tube power $ {3.0}\ {\rm{ W}} $ $ {90.0}\ {\rm{ W}} $ $ {60.0}\ {\rm{ W}} $
    Filters used Thoraeus Thoraeus No Filter
    Exposure time $ {50.0}\ {\rm{ms}} $
    Binned detector pixel size $ {149.6} $ µm
    Number of binned detector pixels 956
    Source to object distance (SOD) $ {431.020}\ {\rm{mm}} $
    Source to detector distance (SDD) $ {529.000}\ {\rm{mm}} $
    Number of projections 3601
    Angular increment $ {0.1}{\deg} $
     | Show Table
    DownLoad: CSV

    Table 4.  Evaluated methods

    Category Method (Year and Reference)
    Classical Methods FBP [33], AGD [62], PDHG [16]
    Post-Processing Methods U-Net [71], MSD-Net [67], DnCNN [96]
    Learned / Unrolled Iterative Methods Learned Gradient [2], TV-regularized Learned Gradient,
    Learned Primal Dual [3]
    Learned Regularizer Methods AR [55], TDV [47], ACR [59,60]
    Plug-and-Play Methods DnCNN-PnP [96], DRUNet-PnP [95], GS-PnP [37]
     | Show Table
    DownLoad: CSV

    Table 5.  Quantitative analysis of all evaluated methods with respect to PSNR and SSIM on their performance in the CT image reconstruction tasks: Full Data "mode 2", Low-Dose "mode 1", and Beam-Hardening "mode 3"

    Method Metric CT Image Reconstruction Task
    Full Data Low-Dose Beam-Hardening
    Classical Methods
    FBP SSIM 0.7463 $ \pm $ 0.0296 0.0838 $ \pm $ 0.0212 0.3367 $ \pm $ 0.0464
    PSNR 35.0285 $ \pm $ 2.0907 18.6437 $ \pm $ 2.0508 14.5594 $ \pm $ 1.9056
    AGD SSIM 0.7753 $ \pm $ 0.0380 0.0727 $ \pm $ 0.0182 0.3483 $ \pm $ 0.0650
    PSNR 35.1006 $ \pm $ 2.2801 17.7062 $ \pm $ 2.0517 14.4294 $ \pm $ 1.9255
    PDHG SSIM 0.7689 $ \pm $ 0.0498 0.6820 $ \pm $ 0.0749 0.4492 $ \pm $ 0.0616
    PSNR 34.3251 $ \pm $ 1.9703 31.9637 $ \pm $ 1.9824 15.0090 $ \pm $ 1.9094
    Post-Processing Methods
    FBP+U-Net SSIM 0.6499 $ \pm $ 0.0681 0.7632 $ \pm $ 0.0780 0.6336 $ \pm $ 0.0760
    PSNR 32.6998 $ \pm $ 1.9512 27.6772 $ \pm $ 3.0133 28.0629 $ \pm $ 3.8439
    FBP+MSDNet SSIM 0.8481 $ \pm $ 0.0384 0.7253 $ \pm $ 0.0864 0.7991 $ \pm $ 0.0665
    PSNR 33.2999 $ \pm $ 1.9492 31.6910 $ \pm $ 1.9559 31.4389 $ \pm $ 2.0988
    FBP+DnCNN SSIM 0.8324 $ \pm $ 0.0403 0.7127 $ \pm $ 0.0806 0.6328 $ \pm $ 0.0751
    PSNR 32.2575 $ \pm $ 1.9506 29.7645 $ \pm $ 1.9748 28.2405 $ \pm $ 2.0374
    Learned / Unrolled Iterative Methods
    LG SSIM 0.7498 $ \pm $ 0.0708 0.6685 $ \pm $ 0.0772 0.6025 $ \pm $ 0.0747
    PSNR 32.4409 $ \pm $ 1.9527 30.4679 $ \pm $ 1.9945 28.4148 $ \pm $ 1.9584
    LGTV SSIM 0.8221 $ \pm $ 0.0532 0.7008 $ \pm $ 0.0797 0.6656 $ \pm $ 0.0774
    PSNR 33.3312 $ \pm $ 1.9493 30.9991 $ \pm $ 1.9328 29.5372 $ \pm $ 2.0008
    LPD SSIM 0.8447 $ \pm $ 0.0370 0.8282 $ \pm $ 0.0519 0.8352 $ \pm $ 0.0568
    PSNR 33.3086 $ \pm $ 1.9466 32.6685 $ \pm $ 1.9656 33.1382 $ \pm $ 1.9759
    Learned Regularizer Methods
    AR SSIM 0.8196 $ \pm $ 0.0385 0.8039 $ \pm $ 0.0505 0.3125 $ \pm $ 0.0479
    PSNR 32.3583 $ \pm $ 1.9621 31.0472 $ \pm $ 1.9763 19.5692 $ \pm $ 1.9612
    TDV SSIM 0.7282 $ \pm $ 0.0652 0.6047 $ \pm $ 0.0815 0.5494 $ \pm $ 0.0635
    PSNR 33.1204 $ \pm $ 1.9496 28.2429 $ \pm $ 1.9433 25.7832 $ \pm $ 2.0109
    ACR SSIM 0.8518 $ \pm $ 0.0362 0.8163 $ \pm $ 0.0522 0.6742 $ \pm $ 0.0505
    PSNR 33.7131 $ \pm $ 1.9450 32.2621 $ \pm $ 1.9689 18.5708 $ \pm $ 1.7824
    Plug-and-Play Methods
    DnCNN-PnP SSIM 0.8585 $ \pm $ 0.0402 0.7795 $ \pm $ 0.0523 0.5989 $ \pm $ 0.0375
    PSNR 32.8506 $ \pm $ 1.9306 31.3986 $ \pm $ 1.9424 15.4667 $ \pm $ 1.9107
    DRUNet-PnP SSIM 0.8573 $ \pm $ 0.0405 0.7984 $ \pm $ 0.0517 0.5945 $ \pm $ 0.0375
    PSNR 32.8935 $ \pm $ 1.9327 31.5762 $ \pm $ 1.9480 15.4543 $ \pm $ 1.9102
    GS-PnP SSIM 0.7856 $ \pm $ 0.0590 0.7727 $ \pm $ 0.0683 0.5131 $ \pm $ 0.0562
    PSNR 32.5734 $ \pm $ 1.9331 31.7931 $ \pm $ 1.9444 15.3466 $ \pm $ 1.9128
     | Show Table
    DownLoad: CSV

    Table 6.  Quantitative analysis of all evaluated methods with respect to PSNR and SSIM on their performance in the CT image reconstruction tasks of Limited-Angle

    Method Metric CT Image Reconstruction Task
    Limited-Angle 120 Limited-Angle 90 Limited-Angle 60
    Classical Methods
    FBP SSIM 0.3418 $ \pm $ 0.0354 0.2369 $ \pm $ 0.0323 0.1557 $ \pm $ 0.0288
    PSNR 22.4188 $ \pm $ 1.9240 19.4251 $ \pm $ 1.9405 16.9057 $ \pm $ 1.9579
    AGD SSIM 0.4904 $ \pm $ 0.0550 0.4411 $ \pm $ 0.0555 0.4146 $ \pm $ 0.0559
    PSNR 25.7508 $ \pm $ 1.9690 24.1128 $ \pm $ 1.9528 22.8848 $ \pm $ 1.9531
    PDHG SSIM 0.5923 $ \pm $ 0.0550 0.5194 $ \pm $ 0.0547 0.4658 $ \pm $ 0.0510
    PSNR 26.3646 $ \pm $ 1.9443 24.4392 $ \pm $ 1.9321 22.7556 $ \pm $ 1.9428
    Post-Processing Methods
    FBP+U-Net SSIM 0.7251 $ \pm $ 0.0519 0.6338 $ \pm $ 0.0659 0.5892 $ \pm $ 0.0678
    PSNR 28.7931 $ \pm $ 2.0052 27.3875 $ \pm $ 2.0441 23.8511 $ \pm $ 2.8370
    FBP+MSDNet SSIM 0.7840 $ \pm $ 0.0641 0.7695 $ \pm $ 0.0579 0.7148 $ \pm $ 0.0726
    PSNR 30.7850 $ \pm $ 1.9784 29.0111 $ \pm $ 1.9740 27.4624 $ \pm $ 1.9661
    FBP+DnCNN SSIM 0.5829 $ \pm $ 0.0521 0.5661 $ \pm $ 0.0528 0.5174 $ \pm $ 0.0559
    PSNR 20.4433 $ \pm $ 2.5345 23.4066 $ \pm $ 2.2764 21.2132 $ \pm $ 2.5140
    Learned / Unrolled Iterative Methods
    LG SSIM 0.6740 $ \pm $ 0.0652 0.5746 $ \pm $ 0.0655 0.5378 $ \pm $ 0.0706
    PSNR 28.1639 $ \pm $ 1.9380 26.3188 $ \pm $ 1.9508 24.7228 $ \pm $ 1.9630
    LGTV SSIM 0.6804 $ \pm $ 0.0647 0.5590 $ \pm $ 0.0639 0.5091 $ \pm $ 0.0643
    PSNR 28.4131 $ \pm $ 1.9300 26.0867 $ \pm $ 1.9545 25.0225 $ \pm $ 1.9687
    LPD SSIM 0.8296 $ \pm $ 0.0410 0.8049 $ \pm $ 0.0444 0.7724 $ \pm $ 0.0571
    PSNR 31.1723 $ \pm $ 1.9607 29.2534 $ \pm $ 1.9941 28.0734 $ \pm $ 1.9589
    Learned Regularizer Methods
    AR SSIM 0.6869 $ \pm $ 0.0505 0.6100 $ \pm $ 0.0543 0.5742 $ \pm $ 0.0620
    PSNR 23.8496 $ \pm $ 2.1578 21.1830 $ \pm $ 2.1772 22.2350 $ \pm $ 2.0260
    TDV SSIM 0.5940 $ \pm $ 0.0595 0.5459 $ \pm $ 0.0572 0.5282 $ \pm $ 0.0584
    PSNR 26.3233 $ \pm $ 1.9315 24.8127 $ \pm $ 1.9399 23.3939 $ \pm $ 1.9662
    ACR SSIM 0.7114 $ \pm $ 0.0543 0.6575 $ \pm $ 0.0541 0.5515 $ \pm $ 0.0529
    PSNR 27.1792 $ \pm $ 1.9441 25.3342 $ \pm $ 1.9442 23.4915 $ \pm $ 1.9539
    Plug-and-Play Methods
    DnCNN-PnP SSIM 0.7617 $ \pm $ 0.0410 0.6981 $ \pm $ 0.0441 0.6200 $ \pm $ 0.0475
    PSNR 26.9997 $ \pm $ 1.9330 25.0658 $ \pm $ 1.9248 23.4108 $ \pm $ 1.9521
    DRUNet-PnP SSIM 0.7634 $ \pm $ 0.0411 0.7002 $ \pm $ 0.0443 0.6149 $ \pm $ 0.0511
    PSNR 27.0262 $ \pm $ 1.9334 25.0829 $ \pm $ 1.9254 23.4362 $ \pm $ 1.9520
    GS-PnP SSIM 0.6396 $ \pm $ 0.0670 0.5668 $ \pm $ 0.0663 0.4989 $ \pm $ 0.0625
    PSNR 26.3318 $ \pm $ 1.9328 24.5129 $ \pm $ 1.9282 22.8225 $ \pm $ 1.9481
     | Show Table
    DownLoad: CSV

    Table 7.  Quantitative analysis of all evaluated methods with respect to PSNR and SSIM on their performance in the CT image reconstruction tasks of Sparse-Angle

    Method Metric CT Image Reconstruction Task
    Sparse-Angle 360 Sparse-Angle 120 Sparse-Angle 60
    Classical Methods
    FBP SSIM 0.2947 $ \pm $ 0.0453 0.1231 $ \pm $ 0.0225 0.0611 $ \pm $ 0.0112
    PSNR 24.9674 $ \pm $ 2.0415 19.8769 $ \pm $ 2.0124 16.6451 $ \pm $ 1.9972
    AGD SSIM 0.3867 $ \pm $ 0.0563 0.4142 $ \pm $ 0.0630 0.4333 $ \pm $ 0.0664
    PSNR 26.9629 $ \pm $ 2.0444 27.5127 $ \pm $ 1.9948 27.2796 $ \pm $ 1.9553
    PDHG SSIM 0.6998 $ \pm $ 0.0685 0.6712 $ \pm $ 0.0718 0.5952 $ \pm $ 0.0728
    PSNR 32.9158 $ \pm $ 1.9739 31.7980 $ \pm $ 1.9798 29.8020 $ \pm $ 1.9326
    Post-Processing Methods
    FBP+U-Net SSIM 0.7449 $ \pm $ 0.0801 0.7518 $ \pm $ 0.0657 0.7728 $ \pm $ 0.0592
    PSNR 30.4766 $ \pm $ 3.4844 26.0785 $ \pm $ 6.3779 19.5421 $ \pm $ 9.9613
    FBP+MSDNet SSIM 0.8392 $ \pm $ 0.0473 0.7993 $ \pm $ 0.0650 0.7626 $ \pm $ 0.0789
    PSNR 33.1188 $ \pm $ 1.9820 32.2993 $ \pm $ 1.9928 30.9931 $ \pm $ 1.9875
    FBP+DnCNN SSIM 0.7864 $ \pm $ 0.0618 0.6701 $ \pm $ 0.0864 0.6180 $ \pm $ 0.0796
    PSNR 31.7575 $ \pm $ 2.0213 29.1817 $ \pm $ 2.3053 28.6079 $ \pm $ 2.3389
    Learned / Unrolled Iterative Methods
    LG SSIM 0.7846 $ \pm $ 0.0628 0.6795 $ \pm $ 0.0790 0.6428 $ \pm $ 0.0777
    PSNR 32.5946 $ \pm $ 1.9764 31.1950 $ \pm $ 1.9658 29.9360 $ \pm $ 1.9603
    LGTV SSIM 0.7811 $ \pm $ 0.0659 0.7100 $ \pm $ 0.0745 0.7081 $ \pm $ 0.0689
    PSNR 32.9404 $ \pm $ 1.9666 31.4072 $ \pm $ 1.9647 29.9021 $ \pm $ 1.9357
    LPD SSIM 0.8433 $ \pm $ 0.0479 0.8300 $ \pm $ 0.0500 0.8206 $ \pm $ 0.0508
    PSNR 33.3809 $ \pm $ 1.9513 32.7032 $ \pm $ 1.9685 32.0583 $ \pm $ 1.9789
    Learned Regularizer Methods
    AR SSIM 0.8309 $ \pm $ 0.0447 0.8117 $ \pm $ 0.0553 0.7949 $ \pm $ 0.0595
    PSNR 32.8067 $ \pm $ 1.9714 32.1030 $ \pm $ 1.9577 30.8378 $ \pm $ 1.9532
    TDV SSIM 0.6815 $ \pm $ 0.0736 0.6235 $ \pm $ 0.0741 0.5725 $ \pm $ 0.0728
    PSNR 32.2673 $ \pm $ 1.9641 30.6585 $ \pm $ 1.9357 28.9451 $ \pm $ 1.8995
    ACR SSIM 0.8271 $ \pm $ 0.0494 0.8074 $ \pm $ 0.0539 0.7849 $ \pm $ 0.0524
    PSNR 33.1537 $ \pm $ 1.9632 31.9181 $ \pm $ 1.9666 30.5147$ \pm $1.9338
    Plug-and-Play Methods
    DnCNN-PnP SSIM 0.8405 $ \pm $ 0.0432 0.8021 $ \pm $ 0.0465 0.7637 $ \pm $ 0.0484
    PSNR 32.4627 $ \pm $ 1.9309 31.3847 $ \pm $ 1.9271 29.9350 $ \pm $ 1.8980
    DRUNet-PnP SSIM 0.8398 $ \pm $ 0.0433 0.8000 $ \pm $ 0.0465 0.7658 $ \pm $ 0.0498
    PSNR 32.5065 $ \pm $ 1.9324 31.3949 $ \pm $ 1.9266 29.9518 $ \pm $ 1.9085
    GS-PnP SSIM 0.7622 $ \pm $ 0.0628 0.7588 $ \pm $ 0.0684 0.6937 $ \pm $ 0.0701
    PSNR 32.1977 $ \pm $ 1.9353 31.2728 $ \pm $ 1.9370 29.5791 $ \pm $ 1.8960
     | Show Table
    DownLoad: CSV
  • [1] J. Adler, H. Kohr and O. Öktem, Odl 0.6.0, 2017.
    [2] J. Adler and O. Öktem, Solving ill-posed inverse problems using iterative deep neural networks, Inverse Problems, 33 (2017), 124007.  doi: 10.1088/1361-6420/aa9581.
    [3] J. Adler and O. Öktem, Learned primal-dual reconstruction, IEEE Transactions on Medical Imaging, 37 (2018), 1322-1332.  doi: 10.1109/TMI.2018.2799231.
    [4] S. G. Armato Ⅲ, G. McLennan, L. Bidaut, M. F. McNitt-Gray, C. R. Meyer, A. P. Reeves, B. Zhao, D. R. Aberle, C. I. Henschke, E. A. Hoffman, et al. The lung image database consortium (lidc) and image database resource initiative (idri): A completed reference database of lung nodules on ct scans, Medical physics, 38 (2011), 915-931. doi: 10.1118/1.3528204.
    [5] S. ArridgeP. MaassO. Öktem and C.-B. Schönlieb, Solving inverse problems using data-driven models, Acta Numerica, 28 (2019), 1-174.  doi: 10.1017/S0962492919000059.
    [6] A. Barbu, Training an active random field for real-time image denoising, IEEE Transactions on Image Processing, 18 (2009), 2451-2462.  doi: 10.1109/TIP.2009.2028254.
    [7] S. BarutcuS. AslanA. K. Katsaggelos and D. Gürsoy, Limited-angle computed tomography with deep image and physics priors, Scientific Reports, 11 (2021), 17740. 
    [8] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences, 2 (2009), 183-202.  doi: 10.1137/080716542.
    [9] M. BeisterD. Kolditz and W. A. Kalender, Iterative reconstruction methods in X-ray CT, Physica Medica, 28 (2012), 94-108.  doi: 10.1016/j.ejmp.2012.01.003.
    [10] M. Benning and M. Burger, Modern regularization methods for inverse problems, Acta Numerica, 27 (2018), 1-111. 
    [11] A. BiguriM. DosanjhS. Hancock and M. Soleimani, Tigre: A matlab-gpu toolbox for cbct image reconstruction, Biomedical Physics and Engineering Express, 2 (2016), 055010.  doi: 10.1088/2057-1976/2/5/055010.
    [12] A. Biguri, R. Lindroos, R. Bryll, H. Towsyfyan, H. Deyhle, I. El khalil Harrane, R. Boardman, M. Mavrogordato, M. Dosanjh, S. Hancock, et al., Arbitrarily large tomography with iterative algorithms on multiple gpus using the tigre toolbox, Journal of Parallel and Distributed Computing, 146 (2020), 52-63.
    [13] A. Biguri and S. Mukherjee, Advancing the frontiers of deep learning for low-dose 3d cone-beam computed tomography (ct) reconstruction, In 2024 IEEE International Conference on Acoustics, Speech and Signal Processing Workshops (ICASSPW), (2024), 81-82.
    [14] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends® in Machine learning, 3 (2011), 1-122.
    [15] S. L. BradyA. T. TroutE. SomasundaramC. G. AntonY. Li and J. R. Dillman, Improving image quality and reducing radiation dose for pediatric ct by using deep learning reconstruction, Radiology, 298 (2021), 180-188.  doi: 10.1148/radiol.2020202317.
    [16] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), 120-145.  doi: 10.1007/s10851-010-0251-1.
    [17] G. Chen and D. Needell, Compressed sensing and dictionary learning, Finite Frame Theory: A Complete Introduction to Overcompleteness, 73 (2016), 201-241. 
    [18] H. ChenY. ZhangM. K. KalraF. LinY. ChenP. LiaoJ. Zhou and G. Wang, Low-dose CT with a residual encoder-decoder convolutional neural network, IEEE Transactions on Medical Imaging, 36 (2017), 2524-2535.  doi: 10.1109/TMI.2017.2715284.
    [19] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and F. F. Li, ImageNet: A large-scale hierarchical image database, In 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, (2009), 248-255.
    [20] A. G. DimakisA. BoraD. Van VeenA. JalalS. Vishwanath and E. Price, Deep generative models and inverse problems, Mathematical Aspects of Deep Learning, (2022), 400-421. 
    [21] A. Ebner and M. Haltmeier, Plug-and-play image reconstruction is a convergent regularization method, IEEE Transactions on Image Processing, (2024). 
    [22] H. W. Engl, M. Hanke-Bourgeois and A. Neubauer, Regularization of Inverse Problems, Number 375 in Mathematics and Its Applications < Dordrecht > . Kluwer Acad. Publ, Dordrecht, 2000.
    [23] J. Frikel and E. T. Quinto, Characterization and reduction of artifacts in limited angle tomography, Inverse Problems, 29 (2013), 125007.  doi: 10.1088/0266-5611/29/12/125007.
    [24] L. Fu and B. De Man, Deep learning tomographic reconstruction through hierarchical decomposition of domain transforms, Visual Computing for Industry, Biomedicine and Art, 5 (2022), 30. 
    [25] M. GenzelJ. Macdonald and M. März, Solving inverse problems with deep neural networks – robustness included?, IEEE Transactions on Pattern Analysis and Machine Intelligence, 45 (2022), 1119-1134. 
    [26] D. T. Ginat and R. Gupta, Advances in computed tomography imaging technology, Annual Review of Biomedical Engineering, 16 (2014), 431-453.  doi: 10.1146/annurev-bioeng-121813-113601.
    [27] B. Girod, Psychovisual aspects of image communication, Signal Processing, 28 (1992), 239-251.  doi: 10.1016/0165-1684(92)90042-U.
    [28] H. GongL. RenS. S. HsiehC. H. McCollough and L. Yu, Deep learning enabled ultra-fast-pitch acquisition in clinical x-ray computed tomography, Medical Physics, 48 (2021), 5712-5726. 
    [29] K. Gregor and Y. LeCun, Learning fast approximations of sparse coding, In Proceedings of the 27th International Conference on Machine Learning, (2010), 399-406.
    [30] H. GuptaK.-H. JinH. Q. NguyenM. T. McCann and M. Unser, CNN-based projected gradient descent for consistent CT image reconstruction, IEEE Transactions on Medical Imaging, 37 (2018), 1440-1453. 
    [31] A. Habring and M. Holler, Neural-network-based regularization methods for inverse problems in imaging, GAMM-Mitteilungen, 47 (2024), e202470004. 
    [32] Y. Han and J.-C. Ye, Framing U-Net via deep convolutional framelets: Application to sparse-view CT, IEEE Transactions on Medical Imaging, 37 (2018), 1418-1429.  doi: 10.1109/TMI.2018.2823768.
    [33] P. C. Hansen, J. Jørgensen and W. R. B. Lionheart, Computed Tomography: Algorithms, Insight and Just Enough Theory, SIAM, 2021.
    [34] A. Hauptmann, S. Mukherjee, C.-B. Schönlieb and F. Sherry, Convergent Regularization in Inverse Problems and Linear Plug-and-Play Denoisers, Foundations of Computational Mathematics, 2024.
    [35] A. A. HendriksenD. SchutW. J. PalenstijnN. ViganóJ. KimD. M. PeltT. Van Leeuwen and K. J. Batenburg, Tomosipo: Fast, flexible and convenient 3d tomography for complex scanning geometries in python, Optics Express, 29 (2021), 40494-40513.  doi: 10.1364/OE.439909.
    [36] J. Hsieh and T. Flohr, Computed tomography recent history and future perspectives, Journal of Medical Imaging, 8 (2021), 052109-052109. 
    [37] S. Hurault, A. Leclaire and N. Papadakis, Gradient step denoiser for convergent plug-and-play, In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022, OpenReview.net, 2022.
    [38] K. H. JinM. T. McCannE. Froustey and M. Unser, Deep convolutional neural network for inverse problems in imaging, IEEE Transactions on Image Processing, 26 (2017), 4509-4522.  doi: 10.1109/TIP.2017.2713099.
    [39] P. M. Joseph and R. A. Schulz, View sampling requirements in fan beam computed tomography, Medical Physics, 7 (1980), 692-702.  doi: 10.1118/1.594723.
    [40] U. S. KamilovC. A. BoumanG. T. Buzzard and B. Wohlberg, Plug-and-play methods for integrating physical and learned models in computational imaging: Theory, algorithms and applications, IEEE Signal Processing Magazine, 40 (2023), 85-97.  doi: 10.1109/MSP.2022.3199595.
    [41] E. KangJ. Min and J. C. Ye, A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction, Medical Physics, 44 (2017), e360-e375. 
    [42] A. Khorashadizadeh, V. Debarnot, T. Liu and I. Dokmanić, Glimpse: Generalized local imaging with mlps, preprint, arXiv: 2401.00816, 2024.
    [43] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, preprint, arXiv: 1412.6980, 2014.
    [44] M. B. Kiss, S. B. Coban, K. J. Batenburg, T. van Leeuwen and F. Lucka, 2DeteCT - A large 2D expandable, trainable, experimental Computed Tomography dataset for machine learning: Slices 1-1,000, Zenodo, 2023.
    [45] M. KissS. CobanK. BatenburgT. van Leeuwen and F. Lucka, 2DeteCT - A large 2D expandable, trainable, experimental Computed Tomography dataset for machine learning, Scientific Data, 10 (2023).  doi: 10.1038/s41597-023-02484-6.
    [46] F. KnollJ. ZbontarA. SriramM. J. MuckleyM. BrunoA. DefazioM. ParenteK. J. GerasJ. KatsnelsonH. ChandaranaZ. ZhangM. DrozdzalvA. RomeroM. RabbatP. VincentJ. PinkertonD. WangN. YakubovaE. OwensC. L. ZitnickM. P. RechtD. K. Sodickson and Y. W. Lui, fastMRI: A publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning, Radiology: Artificial Intelligence, 2 (2020), e190007.  doi: 10.1148/ryai.2020190007.
    [47] E. Kobler, A. Effland, K. Kunisch and T. Pock, Total deep variation for linear inverse problems, In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2020), 7549-7558.
    [48] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from tiny images, 2009.
    [49] Y. LeCunY. Bengio and G. Hinton, Deep learning, Nature, 521 (2015), 436-444.  doi: 10.1038/nature14539.
    [50] Y. LeCunL. BottouY. Bengio and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86 (1998), 2278-2324.  doi: 10.1109/5.726791.
    [51] J. LeuschnerM. SchmidtD. O. Baguer and P. Maass, LoDoPaB-CT, a benchmark dataset for low-dose computed tomography reconstruction, Scientific Data, 8 (2021), 1-12. 
    [52] J. Leuschner, M. Schmidt, P. S. Ganguly, V. Andriiashen, S. B. Coban, A. Denker, D. Bauer, A. Hadjifaradji, K. J. Batenburg, P. Maass, et al. Quantitative comparison of deep learningbased image reconstruction methods for low-dose and sparse-angle CT applications, Journal of Imaging, 7 (2021), 44.
    [53] H. LiJ. SchwabS. Antholzer and M. Haltmeier, NETT: Solving inverse problems with deep neural networks, Inverse Problems, 36 (2020), 065005.  doi: 10.1088/1361-6420/ab6d57.
    [54] J. Liu, R. Anirudh, J. J. Thiagarajan, S. He, K. A. Mohan, U. S. Kamilov and H. Kim, Dolce: A model-based probabilistic diffusion framework for limited-angle ct reconstruction, In Proceedings of the IEEE/CVF International Conference on Computer Vision, (2023), 10498-10508.
    [55] S. Lunz, O. Öktem and C.-B. Schönlieb, Adversarial regularizers in inverse problems, In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, 31 (2018).
    [56] C. McCollough, TU-FG-207A-04: Overview of the low dose CT grand challenge, Medical Physics, 43 (2016), 3759-3760.  doi: 10.1118/1.4957555.
    [57] T. R. MoenB. ChenD. R. Holmes ⅢX. DuanZ. YuL. YuS. LengJ. G. Fletcher and C. H. McCollough, Low-dose ct image and projection dataset, Medical Physics, 48 (2021), 902-911.  doi: 10.1002/mp.14614.
    [58] V. MongaY. Li and Y. C. Eldar, Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing, IEEE Signal Processing Magazine, 38 (2021), 18-44.  doi: 10.1109/MSP.2020.3016905.
    [59] S. Mukherjee, S. Dittmer, Z. Shumaylov, S. Lunz, O. Öktem and C.-B. Schönlieb, Learned convex regularizers for inverse problems, preprint, arXiv: 2008.02839, 2020.
    [60] S. Mukherjee, S. Dittmer, Z. Shumaylov, S. Lunz, O. Öktem and C.-B. Schönlieb, Data-driven convex regularizers for inverse problems, In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2024), 13386-13390.
    [61] S. MukherjeeA. HauptmannO. ÖktemM. Pereyra and C.-B. Schönlieb, Learned reconstruction methods with convergence guarantees: A survey of concepts and applications, IEEE Signal Processing Magazine, 40 (2023), 164-182.  doi: 10.1109/MSP.2022.3207451.
    [62] Y. E. Nesterov, A method of solving a convex programming problem with convergence rate $O(k^2)$, In Doklady Akademii Nauk, 269, (1983), 543-547.
    [63] S. I. Nikolenko, Synthetic-to-real domain adaptation and refinement, In Synthetic Data for Deep Learning, (2021), 235-268.
    [64] W. J. PalenstijnK. J. Batenburg and J. Sijbers, Performance improvements for iterative electron tomography reconstruction using graphics processing units (gpus), Journal of Structural Biology, 176 (2011), 250-253.  doi: 10.1016/j.jsb.2011.07.017.
    [65] H. S. ParkS. M. LeeH. P. KimJ. K. Seo and Y. E. Chung, CT sinogram-consistency learning for metal-induced beam hardening correction, Medical Physics, 45 (2018), 5376-5384.  doi: 10.1002/mp.13199.
    [66] J. A. Patton and T. G. Turkington, SPECT/CT physical principles and attenuation correction, Journal of Nuclear Medicine Technology, 36 (2008), 1-10.  doi: 10.2967/jnmt.107.046839.
    [67] D. M. Pelt and J. A. Sethian, A mixed-scale dense convolutional neural network for image analysis, Proceedings of the National Academy of Sciences, 115 (2018), 254-259.  doi: 10.1073/pnas.1715832114.
    [68] S. RavishankarJ. C. Ye and J. A. Fessler, Image reconstruction: From sparsity to data-adaptive methods and machine learning, Proceedings of the IEEE, 108 (2019), 86-109.  doi: 10.1109/JPROC.2019.2936204.
    [69] J. ReidJ. GamberoniF. Dong and W. Davros, Optimization of kvp and mas for pediatric low-dose simulated abdominal ct: Is it best to base parameter selection on object circumference?, American Journal of Roentgenology, 195 (2010), 1015-1020.  doi: 10.2214/AJR.09.3862.
    [70] E. L. Ritman, Current status of developments and applications of micro-CT, Annual Review of Biomedical Engineering, 13 (2011), 531-552.  doi: 10.1146/annurev-bioeng-071910-124717.
    [71] O. Ronneberger, P. Fischer and T. Brox, U-net: Convolutional networks for biomedical image segmentation, In Medical image computing and computer-assisted intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, proceedings, part Ⅲ 18, (2015), 234-241.
    [72] H. D. SarkissianF. LuckaM. van EijnattenG. ColaciccoS. Coban and K. J. Batenburg, A cone-beam X-ray computed tomography data collection designed for machine learning, Scientific Data, 6 (2019), 215. 
    [73] O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational Methods in Imaging, Springer, 2009.
    [74] H. ShanA. PadoleF. HomayouniehU. KrugerR. D. KheraC. NitiwarangkulM. K. Kalra and G. Wang, Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction, Nature Machine Intelligence, 1 (2019), 269-276. 
    [75] H. R. SheikhM. F. Sabir and A. C. Bovik, A statistical evaluation of recent full reference image quality assessment algorithms, IEEE Transactions on image Processing, 15 (2006), 3440-3451. 
    [76] Z. Shumaylov, J. Budd, S. Mukherjee and C.-B. Schönlieb, Weakly convex regularisers for inverse problems: Convergence of critical points and primal-dual optimisation, 2024, arXiv: 2402.01052.
    [77] Y. Song, L. Shen, L. Xing and S. Ermon, Solving inverse problems in medical imaging with score-based generative models, In International Conference on Learning Representations, 2022, https://openreview.net/forum?id = vaRCHVj0uGI.
    [78] J. Tachella, D. Chen, S. Hurault, M. Terris and A. Wang, DeepInverse: A deep learning framework for inverse problems in imaging, URL, 2023, https://github.com/deepinv/deepinv.
    [79] W. van AarleW. J. PalenstijnJ. CantE. JanssensF. BleichrodtA. DabravolskiJ. De BeenhouwerK. J. Batenburg and J. Sijbers, Fast and flexible x-ray tomography using the astra toolbox, Opt. Express, 24 (2016), 25129-2514.  doi: 10.1364/OE.24.025129.
    [80] W. van AarleW. J. PalenstijnJ. De BeenhouwerT. AltantzisS. BalsK. J. Batenburg and J. Sijbers, The astra toolbox: A platform for advanced algorithm development in electron tomography, Ultramicroscopy, 157 (2015), 35-47.  doi: 10.1016/j.ultramic.2015.05.002.
    [81] E. Van de CasteeleD. V. DyckJ. Sijbers and E. Raman, An energy-based beam hardening model in tomography, Physics in Medicine and Biology, 47 (2002), 4181.  doi: 10.1088/0031-9155/47/23/305.
    [82] S. V. Venkatakrishnan, C. A. Bouman and B. Wohlberg, Plug-and-play priors for model based reconstruction, In 2013 IEEE Global Conference on Signal and Information Processing, (2013), 945-948.
    [83] A. K. VenkataramananC. WuA. C. BovikI. Katsavounidis and Z. Shahid, A hitchhiker's guide to structural similarity, IEEE Access, 9 (2021), 28872-28896.  doi: 10.1109/ACCESS.2021.3056504.
    [84] D. WangF. FanZ. WuR. LiuF. Wang and H. Yu, Ctformer: Convolution-free token2token dilated vision transformer for low-dose ct denoising, Physics in Medicine and Biology, 68 (2023), 065012. 
    [85] G. WangJ. C. YeK. Mueller and J. A. Fessler, Image reconstruction is a new frontier of machine learning, IEEE Transactions on Medical Imaging, 37 (2018), 1289-1296.  doi: 10.1109/TMI.2018.2833635.
    [86] G. WangH. Yu and B. De Man, An outlook on x-ray CT research and development, Medical Physics, 35 (2008), 1051-1064.  doi: 10.1118/1.2836950.
    [87] Z. WangA. C. BovikH. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing, 13 (2004), 600-612. 
    [88] G. Webber and A. J. Reader, Diffusion models for medical image reconstruction, BJR| Artificial Intelligence, 1 (2024). 
    [89] L. M. WeberW. SaelensR. CannoodtC. SonesonA. HapfelmeierP. P. GardnerA.-L. BoulesteixY. Saeys and M. D. Robinson, Essential guidelines for computational method benchmarking, Genome Biology, 20 (2019), 1-12. 
    [90] M. WeissN. BrierleyM. von Schmid and T. Meisen, Simulation study: Data-driven material decomposition in industrial X-ray computed tomography, NDT, 2 (2024), 1-15.  doi: 10.3390/ndt2010001.
    [91] T. WürflM. HoffmannV. ChristleinK. BreiningerY. HuangM. Unberath and A. K. Maier, Deep learning computed tomography: Learning projection-domain weights from image domain in limited angle problems, IEEE Transactions on Medical Imaging, 37 (2018), 1454-1463.  doi: 10.1109/TMI.2018.2833499.
    [92] Q. YangP. YanY. ZhangH. YuY. ShiX. MouM. K. KalraY. ZhangL. Sun and G. Wang, Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss, IEEE Transactions on Medical Imaging, 37 (2018), 1348-1357.  doi: 10.1109/TMI.2018.2827462.
    [93] J. C. YeY. C. Eldar and  M. A UnserDeep Learning for Biomedical Image Reconstruction, Cambridge University Press, 2023. 
    [94] H.-M. Zhang and B. Dong, A review on deep learning in medical image reconstruction, Journal of the Operations Research Society of China, 8 (2020), 311-340.  doi: 10.1007/s40305-019-00287-4.
    [95] K. ZhangY. LiW. ZuoL. ZhangL. Van Gool and R. Timofte, Plug-and-play image restoration with deep denoiser prior, IEEE Transactions on Pattern Analysis and Machine Intelligence, 44 (2022), 6360-6376.  doi: 10.1109/TPAMI.2021.3088914.
    [96] K. ZhangW. ZuoY. ChenD. Meng and L. Zhang, Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE Transactions on Image Processing, 26 (2017), 3142-3155. 
    [97] Z. ZhangX. LiangX. DongY. Xie and G. Cao, A sparse-view CT reconstruction method based on combination of densenet and deconvolution, IEEE Transactions on Medical Imaging, 37 (2018), 1407-1417. 
    [98] B. ZhuJ. Z. LiuS. F. CauleyB. R. Rosen and M. S. Rosen, Image reconstruction by domain-transform manifold learning, Nature, 555 (2018), 487-492.  doi: 10.1038/nature25988.
  • 加载中

Figures(2)

Tables(7)

SHARE

Article Metrics

HTML views(1711) PDF downloads(154) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return