\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Bow echo alarm system using Topological Data Analysis

  • *Corresponding author: Hélène Canot

    *Corresponding author: Hélène Canot 
Abstract / Introduction Full Text(HTML) Figure(9) Related Papers Cited by
  • This study examines the extremely severe storm that hit Corsica in the early hours of August 18, 2022. A "derecho" is a powerful storm system known for producing long-lasting and widespread destructive winds. In this case, the storm was driven by a large cluster of thunderstorms that organized into a fast-moving structure, leading to intense wind gusts across the region. The associated radar signatures generally exhibit linear characteristics, often displaying "bow echo" shapes. In this work, we study the formation and evolution of the bow echo that struck the Corsican coast, causing significant damage and multiple fatalities. Bow echoes are notoriously difficult to predict, as they can form quickly and remain quite localized. We propose using Topological Data Analysis (TDA, specifically, persistent homology, to characterize the shape evolution of a bow echo over time. From weather radar images of reflectivity, we generate point clouds corresponding to the most intense precipitation cells and compute their persistence diagrams via Vietoris–Rips filtrations. We compare persistence diagrams using the Bottleneck distance, the Wasserstein distance, and the kernel approach: the Persistence Weighted Gaussian Kernel (PWGK), the Sliced Wasserstein Kernel (SWK) and the Pertinence Fisher Kernel (PFK). We then apply hierarchical clustering, principal component analysis (PCA), and change-point detection to these distances in order to highlight major structural transitions and detect the moment when the bow echo forms. Additionally, we incorporate a curvature-based metric by measuring the ratio between the arc length and the straight length of the arc shape. We show that combining TDA-based distances with curvature measurements provides valuable insight into the storm's evolution. Finally, we introduce a discussion on triggering an alert based on the topological analysis of the bow echo. Our results suggest that TDA-based methods can help identify distinct structural changes in complex meteorological phenomena.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Filtration with increasing values $ \epsilon = 0, 0.1, 0.35, 1.4 $ (top) of the point cloud $ X $, bottom is the corresponding persistent diagram on the right which each point in 1-dimensional represents the holes

    Figure 2.  The storm cells on radar imagery are represented by a point cloud which itself is transformed into a persistence diagram. Then constructing Bottleneck, Wasserstein, PWGK, SW and PFK distance matrices. Clustering and change point detection methods were applied

    Figure 3.  Visual timestamps of the bow echo. (b)(d) Radar reflectivity of the forming bow echo with (a)(c) corresponding persistence diagrams

    Figure 4.  Distribution of $ H_{1} $ structures in the lifetime diagrams

    Figure 5.  Heatmap representation of Bottleneck, Wasserstein distance matrices (top), PWGK and SWK distance matrices (middle) and PFK distance matrix (bottom)

    Figure 6.  (Left) Dendrogram of Hierarchical Clustering based on the Ward's criterion to distance matrices, (right) Score plot illustrates how clusters were distributed on Principal Components

    Figure 7.  Superposition of ACP projections for the different distance metrics (left), the right graphic represents the zoom of the region where the projection overlap

    Figure 8.  SVD graphs of the Bottleneck, Wasserstein, PWGK, SWK and PFK distance matrices

    Figure 9.  Graph of the evolution of the curvature of the arc

  • [1] U. Bauer, Ripser: Efficient computation of Vietoris–Rips persistence barcodes, J. Appl. Comput. Topol., 5 (2021), 391-423. 
    [2] U. Bauer and M. Lesnick, Induced matchings and the algebraic stability of persistence barcodes, Journal of Computational Geometry, 5 (2014), 108-127. 
    [3] R. CarboneL. W. Chau and R. Wakimoto, The evolution and structure of a "Bow echo microburst" event. Part Ⅱ: the bow echo, Monthly Weather Review, 120 (1992). 
    [4] M. CarriereM. Cuturi and S. Oudot, Sliced Wasserstein kernel for persistence diagrams, International Conference on Machine Learning (ICML), (2017), 664-673. 
    [5] F. Chazal, (Various publications), See https://geometrica.saclay.inria.fr/team/Fred.Chazal.
    [6] F. Chazal, D. Cohen-Steiner, M. Glisse, L. Guibas and S. Oudot, Proximity of Persistence Modules and their Diagrams, Proceedings of the 25th ACM Symposium on Computational Geometry (SoCG), 2009.
    [7] F. ChazalM. GlisseL. Guibas and S. Oudot, Convergence and stability of persistence modules, Journal of Applied and Computational Topology, 2 (2015), 55-84. 
    [8] F. Chazal, C. Levrard and M. Royer, Topological data analysis for anomaly detection in time-series data, Preprint on arXiv. 2024, Available at: https://arXiv.org/abs/2406.06168.
    [9] D. Cohen-SteinerH. Edelsbrunner and J. Harer, Stability of persistence diagrams, Discrete and Computational Geometry, 37 (2007), 103-120.  doi: 10.1007/s00454-006-1276-5.
    [10] S. F. CorfidiM. C. ConiglioA. E. Cohen and C. M. Mead, A proposed revision to the definition of "derecho'', Bull. Amer. Meteor. Soc., 97 (2016), 935-949.  doi: 10.1175/BAMS-D-14-00254.1.
    [11] C. Davis, N. Atkins, D. Bartels, L. Bosart, et al., The bow echo and MCV experiment, Bull. Amer. Meteor. Soc., 85 (2004), 1075-1093.
    [12] V. Divol and W. Polonik, On the choice of weighting measures for wasserstein stability in topological data analysis, SIAM Journal on Mathematics of Data Science, 3 (2021), 921-943. 
    [13] H. Edelsbrunner and J. Harer, Computational Topology: An Introduction, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/mbk/069.
    [14] H. EdelsbrunnerD. Letscher and A. Zomorodian, Topological persistence and simplification, Discrete Comput. Geom., 28 (2002), 511-533.  doi: 10.1007/s00454-002-2885-2.
    [15] W. Engelke, T. Bin Masood, J. Beran, R. Caballero and H. Ingrid, Topology-based feature design and tracking for multi-center cyclones, Topological Methods in Data Analysis and Visualization Ⅵ—Theory, Applications, and Software, (2021), 71-85.
    [16] Z. Fanlin and H. Jinyi, Automatic detection of bow echoes from weather radar images, 13th World Congress on Intelligent Control and Automation (WCICA), IEEE, 2018.
    [17] T. Fujita, Manual of downburst identification for project NIMROD, Satellite and Mesometeorology Research Paper 156, Univ. of Chicago.(1978).
    [18] J. J. González-Alemán, et al., Anthropogenic warming had a crucial role in triggering the historic and destructive Mediterranean derecho in summer 2022, Bull. Amer. Meteor. Soc., 104 (2023), E1526–E1532.
    [19] L. Goulet, Bow echoes: Conceptual schemes and European relevance., The European Forecaster, (2015), 22–31, http://www.euroforecaster.org/newsletter20/meteofr2.
    [20] R. Houze Jr, Mesoscale convective systems Révérend Géophys, 42 (2004).
    [21] R. H. Johns and W. Hirt, Derechos: Widespread convectively induced windstorms, Wea. Forecasting, 2 (1987), 32-49.  doi: 10.1175/1520-0434(1987)002<0032:DWCIW>2.0.CO;2.
    [22] M. Kamani, F. Farhat, S. Wistar and J. Wang, Shape matching using skeleton context for automated bow echo detection, IEEE Int. Conf. on Big Data (Big Data), Washington, DC, IEEE, (2016), 901–908.
    [23] B. A. KlimowskiM. J. BunkersM. R. Hjelmfelt and J. N. Covert, Severe convective windstorms over the northern high plains of the United States, Weather and Forecasting, 18 (2003), 502-519. 
    [24] B. A. KlimowskyM. R. Hjelmfelt and M. J. Bunkers, Radar observations of the early evolution of bow echoes, Weather and Forecasting, 19 (2004), 727-734.  doi: 10.1175/1520-0434(2004)019<0727:ROOTEE>2.0.CO;2.
    [25] S. KolouriS. R. ParkG. K. Rohde and E. A. Hoffman, Sliced Wasserstein Distance for Learning Generative Models, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 41 (2018), 2546-2560. 
    [26] G. KusanoK. Fukumizu and Y. Hiraoka, Kernel method for persistence diagrams via kernel embedding and weight factor, Journal of Machine Learning Research, 18 (2017), 12100-41. 
    [27] T. Le and M. Yamada, Persistence fisher kernel: A riemannian manifold kernel for persistence diagrams, Advances in Neural Information Processing Systems (NeurIPS), (2018), 12091-12102.
    [28] S. Maletic, Y. Zhao and M. Rajkovic, Persistent topological features of dynamical systems, Chaos, 26 (2016), 14 pp.
    [29] Meteociel. https://www.meteociel.fr
    [30] Météo-France. https://meteofrance.com
    [31] H. MoritaM. Inatsu and H. Kokubu, Topological computation analysis of meteorological time-series data, SIAM J. Appl. Dyn. Syst., 18 (2019), 1200-1222.  doi: 10.1137/18M1184746.
    [32] A. Mounier, L. Raynaud, L. Rottner, M. Plu, P. Arbogast, M. Kreitz, L. Mignan et B. Touzé, Détection des échos d'arc dans les prévisions à l'échelle kilométrique à l'aide d'un réseau de neurones convolutifs, Artif. Intell. Système de terre. 1, e210010.
    [33] E. Munch, Applications of persistent homology to time varying systems, Thesis (Ph.D.)–Duke University ProQuest LLC, Ann Arbor, MI, (2013), 126 pp, https://dukespace.lib.duke.edu/items/c0be85db-83c5-43e9-8f41-2cd83762c52c
    [34] G. MuszynskiK. KashinathV. Kurlin and M. Wehner, Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets, Geosci Model Dev, 12 (2019), 613-628.  doi: 10.5194/gmd-12-613-2019.
    [35] G. Tauzin, U. Lupo, et al., Giotto-tda: A Topological Data Analysis Toolkit for Machine Learning and Data Exploration, Tauzin et al, J. Mach., 22 (2021), 1-6. doi: 10.22409/poiesis.v22i37.47597.
    [36] G. User and R. Manual, 3.10.0 Edition, GUDHI Editorial Board. 2022., Available
    [37] https://www.meteociel.fr., La météo en temps réel et prévisions météo pour la France, Observations météo, modèles numériques et logiciels météo (GFS, ECMWF, UKMO, GEM, AROME, ARPEGE, ...
    [38] V. Patil, S. Das and A. Phadke, Methods for mesoscale convective systems detection and tracking: A survey, 2019 10th International Conference on Computing, Communication and Networking Technologies, (2019), 1–7. doi: 10.1109/ICCCNT45670.2019.8944656.
    [39] R. Przybylinski, The bow echo: Observations, numerical simulations, and severe weather detection methods, Wea. Forecasting, 10 (1995), 203-218.  doi: 10.1175/1520-0434(1995)010<0203:TBEONS>2.0.CO;2.
    [40] T. Pucik, The derecho and hailstorms of 18 August 2022., European Severe Storms Laboratory, accessed 11 May 2022, https://www.essl.org/cms/thederecho-and-hailstorms-of-18-august-2022.
    [41] J. Reininghaus, S. Huber, U. Bauer and R. Kwitt, A stable multi-scale kernel for topological machine learning, In In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), (2015), 4741-4748.
    [42] N. Saul and C. Tralie, Scikit-tda: Topological Data Analysis for Python, 2019.https://docs.scikit-tda.org/en/latest/.
    [43] K. Strommen, M. Chantry, J. Dorrington, et al., A topological perspective on weather regimes, Clim Dyn, 60 (2023), 1415–1445. doi: 10.1007/s00382-022-06395-x.
    [44] S. TymochkoE. MunchJ. DunionK. Corbosiero and R. Torn, Using persistent homology to quantify a diurnal cycle in hurricanes, Pattern Recognit Lett, 133 (2020), 137-143.  doi: 10.1016/j.patrec.2020.02.022.
    [45] Y.-G. Zheng and J. Chen, A climatology of deep convection over South China and the adjacent waters during summer, Journal of Tropical Meteorology, 19 (2013), 1-15. 
    [46] A. Zhou, K. Zhao, X. Xu, Q. Liu, Z. Ding, H. Huang, et al., A climatological study on the two types of bow echoes over South China, Journal of Geophysical Research: Atmospheres, 128 (2023), e2023JD038720. doi: 10.1029/2023JD038720.
  • 加载中

Figures(9)

SHARE

Article Metrics

HTML views(613) PDF downloads(42) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return