[1]
|
J. Bian, X. Han, E. Y. Sidky, G. Cao, J. Lu, O. Zhou and X. Pan, Investigation of sparse data mouse imaging using micro-CT with a carbon-nanotube-based X-ray source, Tsinghua Science and Technology, 15 (2010), 74-78.
doi: 10.1016/S1007-0214(10)70012-2.
|
[2]
|
J. Bian, J. H. Siewerdsen, X. Han, E. Y. Sidky, J. L. Prince, C. A. Pelizzari and X. Pan, Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT, Physics in Medicine & Biology, 55 (2010), 6575-6599.
|
[3]
|
T. M. Buzug, Computed Tomography: From Photon Statistics to Modern Cone-Beam CT, Springer, 2008.
|
[4]
|
K. Chen, E. Loli Piccolomini and F. Zama, An automatic regularization parameter selection algorithm in the total variation model for image deblurring, Numerical Algorithms, 67 (2014), 73-92.
doi: 10.1007/s11075-013-9775-y.
|
[5]
|
P. Chen, J. Huang and X. Zhang, A primal–dual fixed point algorithm for convex separable minimization with applications to image restoration, Inverse Problems, 29 (2013), 025011.
doi: 10.1088/0266-5611/29/2/025011.
|
[6]
|
P. Chen, J. Huang and X. Zhang, A primal-dual fixed point algorithm for minimization of the sum of three convex separable functions, Fixed Point Theory and Applications, 2016 (2016), Paper No. 54, 18 pp.
doi: 10.1186/s13663-016-0543-2.
|
[7]
|
Y. Chen, F. F. Yin, Y. Zhang, Y. Zhang and L. Ren, Low dose CBCT reconstruction via prior contour based total variation (PCTV) regularization: a feasibility study, Physics in Medicine & Biology, 63 (2018), 085014.
|
[8]
|
C. Clason, B. Jin and K. Kunisch, A duality-based splitting method for $\ell^1$-TV image restoration with automatic regularization parameter choice, SIAM Journal on Scientific Computing, 32 (2010), 1484-1505.
doi: 10.1137/090768217.
|
[9]
|
L. Condat, Discrete total variation: New definition and minimization, SIAM Journal on Imaging Sciences, 10 (2017), 1258-1290.
doi: 10.1137/16M1075247.
|
[10]
|
Core Imaging Library (CIL) documentation: Optimisation framework, https://tomographicimaging.github.io/CIL/nightly/optimisation/, (Accessed: 2024-02-15).
|
[11]
|
A. H. Delaney and Y. Bresler, Globally convergent edge-preserving regularized reconstruction: An application to limited-angle tomography, IEEE Transactions on Image Processing, 7 (1998), 204-221.
doi: 10.1109/83.660997.
|
[12]
|
Y. Dong, M. Hintermüller and M. M. Rincon-Camacho, Automated regularization parameter selection in multi-scale total variation models for image restoration, Journal of Mathematical Imaging and Vision, 40 (2011), 82-104.
doi: 10.1007/s10851-010-0248-9.
|
[13]
|
X. Duan, L. Zhang, Y. Xing, Z. Chen and J. Cheng, Few-view projection reconstruction with an iterative reconstruction-reprojection algorithm and TV constraint, IEEE Transactions on Nuclear Science, 56 (2009), 1377-1382.
doi: 10.1109/TNS.2008.2009990.
|
[14]
|
E. Esser, X. Zhang and T. Chan, A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, SIAM Journal on Imaging Sciences, 3 (2010), 1015-1046.
doi: 10.1137/09076934X.
|
[15]
|
R. Fahrig, D. A. Jaffray, I. Sechopoulos and J. W. Stayman, Flat-panel conebeam CT in the clinic: History and current state, Journal of Medical Imaging, 8 (2021), 052115.
doi: 10.1117/1.JMI.8.5.052115.
|
[16]
|
L. A. Feldkamp, L. C. Davis and J. W. Kress, Practical cone-beam algorithm, Journal of the Optical Society of America A, 1 (1984), 612-619.
doi: 10.1364/JOSAA.1.000612.
|
[17]
|
K. Frick, P. Marnitz and A. Munk, Statistical multiresolution Dantzig estimation in imaging: Fundamental concepts and algorithmic framework, Electronic Journal of Statistics, 6 (2012), 231-268.
doi: 10.1214/12-EJS671.
|
[18]
|
S. J. Gardner, W. Mao, C. Liu, I. Aref, M. Elshaikh, J. K. Lee, D. Pradhan, B. Movsas, I. J. Chetty and F. Siddiqui, Improvements in CBCT image quality using a novel iterative reconstruction algorithm: A clinical evaluation, Advances in Radiation Oncology, 4 (2019), 390-400.
doi: 10.1016/j.adro.2018.12.003.
|
[19]
|
P. Getreuer, Rudin–Osher–Fatemi total variation denoising using split Bregman, Image Processing On Line, 2 (2012), 74-95.
doi: 10.5201/ipol.2012.g-tvd.
|
[20]
|
A. Gramfort, M. Kowalski and M. Hämäläinen, Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods, Physics in Medicine & Biology, 57 (2012), 1937-1961.
|
[21]
|
K. Hämäläinen, L. Harhanen, A. Hauptmann, A. Kallonen, E. Niemi and S. Siltanen, Total variation regularization for large-scale X-ray tomography, International Journal of Tomography and Simulation, 25.
|
[22]
|
K. Hämäläinen, A. Kallonen, V. Kolehmainen, M. Lassas, K. Niinimäki and S. Siltanen, Sparse tomography, SIAM Journal on Scientific Computing, 35 (2013), B644-B665.
doi: 10.1137/120876277.
|
[23]
|
G. T. Herman and R. Davidi, Image reconstruction from a small number of projections, Inverse Problems, 24 (2008), 045011.
doi: 10.1088/0266-5611/24/4/045011.
|
[24]
|
J. H. Hubbell and S. M. Seltzer, X-ray mass attenuation coefficients - NIST standard reference database 126, https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients, 2004, (Accessed: 2024-04-26).
|
[25]
|
T. M. Inc., Matlab version: 23.2 (r2023b), https://www.mathworks.com, 2023.
|
[26]
|
T. L. Jensen, J. H. Jørgensen, P. C. Hansen and S. H. Jensen, Implementation of an optimal first-order method for strongly convex total variation regularization, BIT Numerical Mathematics, 52 (2012), 329-356.
doi: 10.1007/s10543-011-0359-8.
|
[27]
|
J. S. Jørgensen and E. Y. Sidky, How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography, Philosophical Transactions of the Royal Society A, 373 (2015), 20140387.
doi: 10.1098/rsta.2014.0387.
|
[28]
|
T. Kaasalainen, M. Ekholm, T. Siiskonen and M. Kortesniemi, Dental cone beam CT: An updated review, Physica Medica, 88 (2021), 193-217.
doi: 10.1016/j.ejmp.2021.07.007.
|
[29]
|
J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Springer, 2005.
|
[30]
|
J. Kaipio and E. Somersalo, Statistical inverse problems: Discretization, model reduction and inverse crimes, Journal of Computational and Applied Mathematics, 198 (2007), 493-504.
doi: 10.1016/j.cam.2005.09.027.
|
[31]
|
A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, IEEE Press, 1988.
|
[32]
|
S. Kindermann, L. D. Mutimbu and E. Resmerita, A numerical study of heuristic parameter choice rules for total variation regularization, Journal of Inverse and Ill-Posed Problems, 22 (2014), 63-94.
doi: 10.1515/jip-2012-0074.
|
[33]
|
V. Kolehmainen, M. Lassas, K. Niinimäki and S. Siltanen, Sparsity-promoting Bayesian inversion, Inverse Problems, 28 (2012), 025005.
doi: 10.1088/0266-5611/28/2/025005.
|
[34]
|
V. Kolehmainen, S. Siltanen, S. Järvenpää, J. P. Kaipio, P. Koistinen, M. Lassas, J. Pirttilä and E. Somersalo, Statistical inversion for medical X-ray tomography with few radiographs: Ⅱ. application to dental radiology, Physics in Medicine & Biology, 48 (2003), 1465-1490.
|
[35]
|
V. Kolehmainen, A. Vanne, S. Siltanen, S. Järvenpää, J. P. Kaipio, M. Lassas and M. Kalke, Parallelized Bayesian inversion for three-dimensional dental X-ray imaging, IEEE Transactions on Medical Imaging, 25 (2006), 218-228.
doi: 10.1109/TMI.2005.862662.
|
[36]
|
M. J. Lagerwerf, D. M. Pelt, W. J. Palenstijn and K. J. Batenburg, A computationally efficient reconstruction algorithm for circular cone-beam computed tomography using shallow neural networks, Journal of Imaging, 6 (2020), 135.
doi: 10.3390/jimaging6120135.
|
[37]
|
H. Y. Liao and G. Sapiro, Sparse representations for limited data tomography, in 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, (2008), 1375-1378.
|
[38]
|
K. Lu, L. Ren and F.-F. Yin, A geometry-guided deep learning technique for CBCT reconstruction, Physics in Medicine & Biology, 66.
|
[39]
|
M. Manfred, Robust stability of systems with integral control, IEEE Transactions on Automatic Control, 30 (1985), 574-577.
doi: 10.1109/TAC.1985.1104012.
|
[40]
|
D. Matenine, M. Kachelriess, P. Després, J. A. de Guise and M. Schmittbuhl, Potential of iterative reconstruction for maxillofacial cone beam CT imaging: technical note, Neuroradiology, 62 (2020), 1511-1514.
doi: 10.1007/s00234-020-02467-z.
|
[41]
|
A. Meaney, Cone-beam computed tomography dataset of a walnut imaged at 4 different dose levels, 2024, (Accessed: 2024-05-31).
doi: 10.5281/zenodo.11397265.
|
[42]
|
N. Moriakov, J.-J. Sonke and J. Teuwen, End-to-end memory-efficient reconstruction for cone beam CT, Medical Physics, 50 (2023), 7579-7593.
doi: 10.1002/mp.16779.
|
[43]
|
F. Natterer, The Mathematics of Computerized Tomography, John Wiley & Sons, 1986.
|
[44]
|
K. Niinimäki, M. Lassas, K. Hämäläinen, A. Kallonen, V. Kolehmainen, E. Niemi and S. Siltanen, Multiresolution parameter choice method for total variation regularized tomography, SIAM Journal of Imaging Sciences, 9 (2016), 938-974.
doi: 10.1137/15M1034076.
|
[45]
|
H. S. Park, Y. E. Chung and J. K. Seo, Computed tomographic beam-hardening artefacts: mathematical characterization and analysis, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373 (2015), 20140388.
doi: 10.1098/rsta.2014.0388.
|
[46]
|
M. Persson, D. Bone and H. Elmqvist, Total variation norm for three-dimensional iterative reconstruction in limited view angle tomography, Physics in Medicine & Biology, 46 (2001), 853-866.
|
[47]
|
Z. Purisha, J. Rimpeläinen, T. Bubba and S. Siltanen, Controlled wavelet domain sparsity for X-ray tomography, Measurement Science and Technology, 29 (2018), 014002.
doi: 10.1088/1361-6501/aa9260.
|
[48]
|
S. Ravishankar, J. C. Ye and J. A. Fessler, Image reconstruction: From sparsity to data-adaptive methods and machine learning, Proceedings of the IEEE, 108 (2020), 86-109.
doi: 10.1109/JPROC.2019.2936204.
|
[49]
|
D. S. Rigie, A. A. Sanchez and P. J. La Rivière, Assessment of vectorial total variation penalties on realistic dual-energy CT data, Physics in Medicine & Biology, 62 (2017), 3284-3298.
|
[50]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[51]
|
M. Sabaté Landman, A. Biguri, S. Hatamikia, R. Boardman, J. Aston and C.-B. Schönlieb, On Krylov methods for large-scale CBCT reconstruction, Physics in Medicine & Biology, 68 (2023), 155008.
|
[52]
|
M. Schabel, 3D Shepp-Logan phantom, https://www.mathworks.com/matlabcentral/fileexchange/9416-3d-shepp-logan-phantom, MATLAB Central File Exchange. (Accessed: 2024-04-26).
|
[53]
|
E. Y. Sidky, C. M. Kao and X. Pan, Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT, Journal of X-Ray Science and Technology, 14 (2006), 119-139.
doi: 10.3233/XST-2006-00155.
|
[54]
|
E. Y. Sidky, C. M. Kao and X. Pan, Effect of the data constraint on few-view, fan-beam CT image reconstruction by TV minimization, 2006 IEEE Nuclear Science Symposium Conference Record, 4 (2006), 2296-2298.
|
[55]
|
R. K. Swank, Absorption and noise in X‐ray phosphors, Journal of Applied Physics, 44 (1973), 4199-4203.
doi: 10.1063/1.1662918.
|
[56]
|
J. Tang, B. E. Nett and G. H. Chen, Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms, Physics in Medicine & Biology, 54 (2009), 5781-5804.
|
[57]
|
Z. Tian, X. Jia, K. Yuan, T. Pan and S. B. Jiang, Low-dose CT reconstruction via edge-preserving total variation regularization, Physics in Medicine & Biology, 56 (2011), 5949-5967.
|
[58]
|
A. Toma, B. Sixou and F. Peyrin, Iterative choice of the optimal regularization parameter in TV image restoration, Inverse Problems and Imaging, 9 (2015), 1171-1191.
doi: 10.3934/ipi.2015.9.1171.
|
[59]
|
H. W. Tseng, A. Karellas and S. Vedanthama, Cone-beam breast CT using an offset detector: effect of detector offset and image reconstruction algorithm, Physics in Medicine & Biology, 67.
|
[60]
|
H. W. Tseng, S. Vedanthama and A. Karellas, Cone-beam breast computed tomography using ultra-fast image reconstruction with onstrained, total-variation minimization for suppression of artifacts, Physica Medica, 73 (2020), 117-124.
doi: 10.1016/j.ejmp.2020.04.020.
|
[61]
|
W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. De Beenhouwer, K. J. Batenburg and J. Sijbers, Fast and flexible X-ray tomography using the ASTRA toolbox, Optics Express, 24 (2016), 25129-25147.
doi: 10.1364/OE.24.025129.
|
[62]
|
W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg and J. Sijbers, The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography, Ultramicroscopy, 157 (2015), 35-47.
doi: 10.1016/j.ultramic.2015.05.002.
|
[63]
|
E. van den Berg and M. P. Friedlander, Spot – a linear-operator toolbox, version 1.2, https://www.cs.ubc.ca/labs/scl/spot/index.html, 2013, (Accessed: 2024-02-09).
|
[64]
|
Y.-W. Wen and R. H. Chan, Parameter selection for total-variation-based image restoration using discrepancy principle, IEEE Transactions on Image Processing, 21 (2012), 1770-1781.
doi: 10.1109/TIP.2011.2181401.
|
[65]
|
P. Wu, A. Sisniega, J. W. Stayman, W. Zbijewski, D. Foos, X. Wang, N. Khanna, N. Aygun, R. D. Stevens and J. H. Siewerdsen, Cone-beam CT for imaging of the head/brain: Development and assessment of scanner prototype and reconstruction algorithms, Medical Physics, 47 (2020), 2392-2407.
|
[66]
|
C. Yang, P. Wu, S. Gong, J. Wang, Q. Lyu, X. Tang and T. Niu, Shading correction assisted iterative cone-beam CT reconstruction, Physics in Medicine & Biology, 62 (2017), 8495-8520.
|
[67]
|
P. Zhang, S. Ren, Y. Liu, Z. Gui, H. Shangguan, Y. Wang, H. Shu and Y. Chen, A total variation prior unrolling approach for computed tomography reconstruction, Medical Physics, 50 (2023), 2816-2834.
doi: 10.1002/mp.16307.
|