[1]
|
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, The Clarendon Press, Oxford University Press, New York, 2000.
|
[2]
|
A. I. Aviles-Rivero, N. Debroux, G. Williams, M. J. Graves and C.-B. Schönlieb, Compressed sensing plus motion (cs + m): A new perspective for improving undersampled mr image reconstruction, Med Image Anal., 68 (2021), 101933.
doi: 10.1016/j.media.2020.101933.
|
[3]
|
E. C. Bassett, E. G. Kholmovski, B. D. Wilson, E. V. R. DiBella, D. J. Dosdall, R. Ranjan, C. J. McGann and D. Kim, Evaluation of highly accelerated real-time cardiac cine mri in tachycardia, NMR in Biomedicine, 27 (2014), 175-182.
doi: 10.1002/nbm.3049.
|
[4]
|
A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences, 2 (2009), 183-202.
doi: 10.1137/080716542.
|
[5]
|
J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), 375-393.
doi: 10.1007/s002110050002.
|
[6]
|
J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne and Q. Zhang, JAX: Composable transformations of Python+NumPy programs, 2018.
|
[7]
|
M. Burger, H. Dirks, L. Frerking, A. Hauptmann, T. Helin and S. Siltanen, A variational reconstruction method for undersampled dynamic x-ray tomography based on physical motion models, Inverse Problems, 33 (2017), 124008, 24pp.
doi: 10.1088/1361-6420/aa99cf.
|
[8]
|
M. Burger, H. Dirks and C.-B. Schönlieb, A variational model for joint motion estimation and image reconstruction, SIAM Journal on Imaging Sciences, 11 (2018), 94-128.
doi: 10.1137/16M1084183.
|
[9]
|
C. Chen, B. Gris and O. Öktem, A new variational model for joint image reconstruction and motion estimation in spatiotemporal imaging, SIAM Journal on Imaging Sciences, 12 (2019), 1686-1719.
doi: 10.1137/18M1234047.
|
[10]
|
C. Chen, Y. Liu, P. Schniter, M. Tong, K. Zareba, O. Simonetti, L. Potter and R. Ahmad, Ocmr (v1.0)–open-access multi-coil k-space dataset for cardiovascular magnetic resonance imaging, 2020. arXiv: 2008.03410.
|
[11]
|
R. K. G. Do, H. Rusinek and B. Taouli, Dynamic contrast-enhanced mr imaging of the liver: Current status and future directions, Magnetic Resonance Imaging Clinics of North America, 17 (2009), 339-349.
|
[12]
|
L. Feng, M. B. Srichai, R. P. Lim, A. Harrison, W. King, G. Adluru, E. V. R. Dibella, D. K. Sodickson, R. Otazo and D. Kim, Highly accelerated real-time cardiac cine mri using k–t sparse-sense, Magnetic Resonance in Medicine, 70 (2013), 64-74.
doi: 10.1002/mrm.24440.
|
[13]
|
J. A. Fessler and D. C. Noll, Iterative image reconstruction in mri with separate magnitude and phase regularization, In 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), 1 (2004), 209-212.
|
[14]
|
H. Gao, S. Rapacchi, D. Wang, J. Moriarty, C. Meehan, J. Sayre, G. Laub, P. Finn and P. Hu, Compressed sensing using prior rank, intensity and sparsity model (prism): Applications in cardiac cine mri, In Proceedings of the 20th Annual Meeting of ISMRM, Melbourne, Australia, 2242 (2012).
|
[15]
|
Y. Gordon, S. Partovi and M. Müller-Eschner, et al., Dynamic contrast-enhanced magnetic resonance imaging: Fundamentals and application to the evaluation of the peripheral perfusion, Cardiovascular Diagnosis and Therapy, 4 (2014), 147-164.
|
[16]
|
A. Hauptmann, O. Öktem and C. Schönlieb, Image reconstruction in dynamic inverse problems with temporal models, Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, 2021, 1-31.
doi: 10.1007/978-3-030-03009-4_83-1.
|
[17]
|
J. S. Jørgensen, E. Ametova, G. Burca, G. Fardell, E. Papoutsellis, E. Pasca, K. Thielemans, M. Turner, R. Warr, W. R. B. Lionheart and P. J. Withers, Core imaging library - part ⅰ: a versatile python framework for tomographic imaging, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379 (2021), 20200192.
|
[18]
|
D. Liang, B. Liu, J. Wang and L. Ying, Accelerating sense using compressed sensing, Magnetic Resonance in Medicine, 62 (2009), 1574-1584.
doi: 10.1002/mrm.22161.
|
[19]
|
M. Lustig, D. Donoho and J. M. Pauly, Sparse mri: The application of compressed sensing for rapid mr imaging, Magnetic Resonance in Medicine, 58 (2007), 1182-1195.
|
[20]
|
R. Otazo, E. Candès and D. K. Sodickson, Low-rank plus sparse matrix decomposition for accelerated dynamic mri with separation of background and dynamic components, Magnetic Resonance in Medicine, 73 (2015), 1125-1136.
doi: 10.1002/mrm.25240.
|
[21]
|
E. Ovtchinnikov, R. Brown, C. Kolbitsch, E. Pasca, C. da Costa-Luis, A. G. Gillman, B. A. Thomas, N. Efthimiou, J. Mayer, P. Wadhwa, M. J. Ehrhardt, S. Ellis, J. S. Jørgensen, J. Matthews, C. Prieto, A. J. Reader, C. Tsoumpas, M. Turner, D. Atkinson and K. Thielemans, Sirf: Synergistic image reconstruction framework, Computer Physics Communications, 249 (2020), 107087.
|
[22]
|
T. Pock, D. Cremers, H. Bischof and A. Chambolle, Global solutions of variational models with convex regularization, SIAM Journal on Imaging Sciences, 3 (2010), 1122-1145.
doi: 10.1137/090757617.
|
[23]
|
C. Qin, J. Schlemper, J. Caballero, A. N. Price, J. V. Hajnal and D. Rueckert, Convolutional recurrent neural networks for dynamic mr image reconstruction, IEEE Transactions on Medical Imaging, 38 (2019), 280-290.
doi: 10.1109/TMI.2018.2863670.
|
[24]
|
J. Schlemper, J. Caballero, J. V. Hajnal, A. N. Price and D. Rueckert, A deep cascade of convolutional neural networks for dynamic MR image reconstruction, IEEE Trans. Medical Imaging, 37 (2018), 491-503.
doi: 10.1109/TMI.2017.2760978.
|
[25]
|
B. Schmitzer, K. P. Schäfers and B. Wirth, Dynamic cell imaging in pet with optimal transport regularization, IEEE Transactions on Medical Imaging, 39 (2020), 1626-1635.
doi: 10.1109/TMI.2019.2953773.
|
[26]
|
T. Schuster, B. Hahn and M. Burger, Dynamic inverse problems: Modelling—regularization—numerics, Inverse Problems, 34 (2018), 040301, 4pp.
doi: 10.1088/1361-6420/aab0f5.
|
[27]
|
Z. Stankovic, B. D. Allen, J. Garcia, K. B. Jarvis and M. Markl, 4d flow imaging with mri, Cardiovascular Diagnosis and Therapy, 4 (2014).
|
[28]
|
S. Sudarski, T. Henzler and H. Haubenreisser, et al., Free-breathing sparse sampling cine mr imaging with iterative reconstruction for the assessment of left ventricular function and mass at 3.0 t, Radiology, 282 (2017), 74-83.
doi: 10.1148/radiol.2016151002.
|
[29]
|
P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization, Journal of Optimization Theory and Applications, 109 (2001), 475-494.
doi: 10.1023/A:1017501703105.
|
[30]
|
M. Usman, D. Atkinson, F. Odille, C. Kolbitsch, G. Vaillant, T. Schaeffter, P. G. Batchelor and C. Prieto, Motion corrected compressed sensing for free-breathing dynamic cardiac mri, Magnetic Resonance in Medicine, 70 (2013), 504-516.
doi: 10.1002/mrm.24463.
|
[31]
|
T. Valkonen, A primal–dual hybrid gradient method for nonlinear operators with applications to mri, Inverse Problems, 30 (2014), 055012, 45pp.
doi: 10.1088/0266-5611/30/5/055012.
|
[32]
|
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing, 13 (2004), 600-612.
|
[33]
|
J. Yang, T. Küstner and P. Hu, et al., End-to-end deep learning of non-rigid groupwise registration and reconstruction of dynamic mri, Frontiers in Cardiovascular Medicine, 9 (2022).
doi: 10.3389/fcvm.2022.880186.
|
[34]
|
N. Zhao, D. O'Connor and B. Adrian, et al., Motion compensated dynamic mri reconstruction with local affine optical flow estimation, EEE Transactions on Bio-Medical Engineering, 66 (2019), 3050-3059.
doi: 10.1109/TBME.2019.2900037.
|