Fourier sensing devices collect data in the frequency domain. For example, Magnetic Resonance Imaging (MRI) is a Fourier sensing modality where the user has the freedom to choose which spatial frequencies are sampled. With Fourier sensing, it is commonly the case that the field-of-view (FOV), the area of space to be imaged, is known prior to reconstruction. Most commonly, reconstruction algorithms have focused on FOVs with simple geometries. This leads to sampling patterns that are more burdensome (with more samples) than necessary. Due to the reduced area of imaging possible with an arbitrary (e.g., non-rectangular and non-convex) FOV, the number of samples required for a high-quality image is reduced. However, when an arbitrary FOV has been considered, the reconstruction algorithm has been computationally expensive. In this manuscript, we present a method to reduce the sampling burden for an arbitrary FOV with an accompanying direct (non-iterative) and computationally efficient reconstruction algorithm. We also present a method to decrease the computational cost of the iterative POCSENSE algorithm used with a non-rectangular FOV. We present results using MRI data of an ankle, a pineapple, and a brain.
Citation: |
Figure 3. A depiction of how a non-rectangular FOV is separated into components: a) shows an aliased version non-rectangular FOV of Fig. 2a where the dashed lines separate the outer region of (b) and the inner region of (c)
Figure 6. Subfigure (a) shows a sagittal slice of an ankle and foot; (b) shows a corresponding non-rectangular FOV that does not include the upper-right quadrant, and (c) shows the corresponding sampling pattern for the non-rectangular FOV of (b). The sampling burden of the reduced sampling pattern is $ 75\% $
Figure 7. Magnitude image reconstructions of a sagittal slice of an ankle and foot: a) shows the fully-sampled reconstruction, b) shows the zero-filled reconstruction with the non-rectangular FOV sampling pattern of Fig. 6b with a sampling burden of $ 75\% $, c) shows the reconstruction using Alg. 1, c) the reconstruction using only the even columns of data, d) the reconstruction after subtracting away the Fourier values of the inner region, and e) the difference between (a) and (c)
Figure 9. Magnitude image reconstruction of the ankle using the direct reconstruction methods and the sampling pattern determined according to the individual coil FOVs shown in Fig. 8b with a sampling burden of $ 63\% $. The difference image shows the type of the errors that arise from this method; these errors are due to the fact that individual coils sense the whole subject imaged
[1] |
N. Aggarwal and Y. Bresler, Patient-adapted reconstruction and acquisition dynamic imaging method (PARADIGM) for MRI, Inverse Problems, 24 (2008), 045015, 29 pp.
doi: 10.1088/0266-5611/24/4/045015.![]() ![]() ![]() |
[2] |
C. B. H. Ahn, J. Kim and Z. H. Cho, High-speed spiral-scan echo planar NMR imaging-I, IEEE Transactions on Medical Imaging, 5 (1986), 2-7.
doi: 10.1109/TMI.1986.4307732.![]() ![]() |
[3] |
C. A. Baron, N. Dwork, J. M. Pauly and D. G. Nishimura, Rapid compressed sensing reconstruction of 3D non-cartesian MRI, Magnetic Resonance in Medicine, 79 (2018), 2685-2692.
doi: 10.1002/mrm.26928.![]() ![]() |
[4] |
P. Beatty, A. Brau, S. Chang, S. Joshi, C. Michelich, E. Bayram, T. Nelson, R. Herfkens and J. Brittain, A method for autocalibrating 2D accelerated volumetric parallel imaging with clinically practical reconstruction times, in Proceedings of the International Society for Magnetic Resonance in Medicine, vol. 15, 2007, 1749.
![]() |
[5] |
P. J. Beatty, D. G. Nishimura and J. M. Pauly, Rapid gridding reconstruction with a minimal oversampling ratio, IEEE Transactions on Medical Imaging, 24 (2005), 799-808.
doi: 10.1109/TMI.2005.848376.![]() ![]() |
[6] |
A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences, 2 (2009), 183-202.
doi: 10.1137/080716542.![]() ![]() ![]() |
[7] |
J. B. Birdsong and N. I. Rummelt, The hexagonal fast fourier transform, in IEEE International Conference on Image Processing (ICIP), IEEE, (2016), 1809-1812.
doi: 10.1109/ICIP.2016.7532670.![]() ![]() |
[8] |
R. N. Bracewell, Radio astronomy techniques, in Astrophysics V, Springer, 1962, 42-129.
doi: 10.1007/978-3-642-45984-9_2.![]() ![]() |
[9] |
R. N. Bracewell, Two-Dimensional Imaging, Prentice-Hall, Inc., 1995.
![]() |
[10] |
A. M. Bush, C. M. Sandino, S. Ramachandran, F. Ong, N. Dwork, E. J. Zucker, A. B. Syed, J. M. Pauly, M. T. Alley and S. S. Vasanawala, Rosette trajectories enable ungated, motion-robust, simultaneous cardiac and liver t2* iron assessment, Journal of Magnetic Resonance Imaging, 52 (2020), 1688-1698.
doi: 10.1002/jmri.27196.![]() ![]() |
[11] |
E. J. Candès and M. B. Wakin, An introduction to compressive sampling, IEEE Signal Processing Magazine, 25 (2008), 21-30.
doi: 10.1109/MSP.2007.914731.![]() ![]() |
[12] |
K. F. Cheung and R. J. Marks, Imaging sampling below the nyquist density without aliasing, Journal of the Optical Society of America A, 7 (1990), 92-105.
doi: 10.1364/JOSAA.7.000092.![]() ![]() |
[13] |
E. K. Cole, F. Ong, S. S. Vasanawala and J. M. Pauly, Fast unsupervised MRI reconstruction without fully-sampled ground truth data using generative adversarial networks, in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, 3988-3997.
doi: 10.1109/ICCVW54120.2021.00444.![]() ![]() |
[14] |
A. Deshmane, V. Gulani, M. A. Griswold and N. Seiberlich, Parallel MR imaging, Journal of Magnetic Resonance Imaging, 36 (2012), 55-72.
doi: 10.1002/jmri.23639.![]() ![]() |
[15] |
N. Dwork, J. W. Gordon and E. K. Englund, Accelerated parallel magnetic resonance imaging with compressed sensing using structured sparsity, Journal of Medical Imaging, 11 (2024), 033504.
doi: 10.1117/1.JMI.11.3.033504.![]() ![]() |
[16] |
N. Dwork and P. E. Larson, Utilizing the structure of a redundant dictionary comprised of wavelets and curvelets with compressed sensing, Journal of Electronic Imaging, 31 (2022), 063043.
doi: 10.1117/1.JEI.31.6.063043.![]() ![]() |
[17] |
N. Dwork, D. O'Connor, C. A. Baron, E. M. I. Johnson, A. B. Kerr, J. M. Pauly and P. E. Z. Larson, Utilizing the wavelet transform's structure in compressed sensing, Signal, Image and Video Processing, 15 (2021), 1407-1414.
doi: 10.1007/s11760-021-01872-y.![]() ![]() |
[18] |
N. Dwork, D. O'Connor, E. M. I. Johnson, C. A. Baron, J. W. Gordon, J. M. Pauly and P. E. Z. Larson, Optimization in the space domain for density compensation with the nonuniform FFT, Magnetic Resonance Imaging, 100 (2023), 102-111.
doi: 10.1016/j.mri.2023.03.003.![]() ![]() |
[19] |
D. E. Dudgeon, Multidimensional Digital Signal Processing, Prentice-hall, 1983.
![]() |
[20] |
R. R. Ernst, G. Bodenhausen and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford university press, 1990.
doi: 10.1093/oso/9780198556473.001.0001.![]() ![]() |
[21] |
J. A. Fessler, Model-based image reconstruction for MRI, IEEE Signal Processing Magazine, 27 (2010), 81-89.
doi: 10.1109/MSP.2010.936726.![]() ![]() |
[22] |
L. Greengard and J.-Y. Lee, Accelerating the nonuniform fast fourier transform, SIAM Review, 46 (2004), 443-454.
doi: 10.1137/S003614450343200X.![]() ![]() ![]() |
[23] |
J. P. Haldar, Low-rank modeling of local $k$-space neighborhoods (loraks) for constrained MRI, IEEE Transactions on Medical Imaging, 33 (2013), 668-681.
doi: 10.1109/TMI.2013.2293974.![]() ![]() |
[24] |
J. I. Jackson, C. H. Meyer, D. G. Nishimura and A. Macovski, Selection of a convolution function for fourier inversion using gridding (computerised tomography application), IEEE Transactions on Medical Imaging, 10 (1991), 473-478.
doi: 10.1109/42.97598.![]() ![]() |
[25] |
H. Kajbaf, J. T. Case, Z. Yang and Y. R. Zheng, Compressed sensing for sar-based wideband three-dimensional microwave imaging system using non-uniform fast fourier transform, IET Radar, Sonar & Navigation, 7 (2013), 658-670.
doi: 10.1049/iet-rsn.2012.0149.![]() ![]() |
[26] |
W. T. Kimberly, A. J. Sorby-Adams, A. G. Webb, E. X. Wu, R. Beekman, R. Bowry, S. J. Schiff, A. de Havenon, F. X. Shen, G. Sze, et al., Brain imaging with portable low-field MRI, Nature Reviews Bioengineering, 1 (2023), 617-630.
doi: 10.1038/s44222-023-00086-w.![]() ![]() |
[27] |
P. E. Z. Larson, M. S. Lustig and D. G. Nishimura, Anisotropic field-of-view shapes for improved PROPELLER imaging, Magnetic Resonance Imaging, 27 (2009), 470-479.
doi: 10.1016/j.mri.2008.07.023.![]() ![]() |
[28] |
Z.-P. Liang, Constrained reconstruction methods in mr imaging, Rev. Magn. Reson. Med., 4 (1992), 67.
![]() |
[29] |
R. A. Lobos, C.-C. Chan and J. P. Haldar, New theory and faster computations for subspace-based sensitivity map estimation in multichannel MRI, IEEE Transactions on Medical Imaging, 43 (2023), 286-296.
doi: 10.1109/TMI.2023.3297851.![]() ![]() |
[30] |
Y. M. Lu, M. N. Do and R. S. Laugesen, A computable fourier condition generating alias-free sampling lattices, IEEE Transactions on Signal Processing, 57 (2009), 1768-1782.
doi: 10.1109/TSP.2009.2013904.![]() ![]() ![]() |
[31] |
M. Lustig, D. Donoho and J. M. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magnetic Resonance in Medicine, 58 (2007), 1182-1195.
doi: 10.1002/mrm.21391.![]() ![]() |
[32] |
C. H. Meyer, B. S. Hu, D. G. Nishimura and A. Macovski, Fast spiral coronary artery imaging, Magnetic Resonance in Medicine, 28 (1992), 202-213.
doi: 10.1002/mrm.1910280204.![]() ![]() |
[33] |
D. G. Nishimura, Principles of Magnetic Resonance Imaging, lulu.com, 1996.
![]() |
[34] |
D. C. Noll, Multishot rosette trajectories for spectrally selective MR imaging, IEEE Transactions on Medical Imaging, 16 (1997), 372-377.
doi: 10.1109/42.611345.![]() ![]() |
[35] |
C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Transactions on Mathematical Software (TOMS), 8 (1982), 43-71.
doi: 10.1145/355984.355989.![]() ![]() ![]() |
[36] |
A. Papoulis, Signal Analysis, Mcgraw-Hill, 1977.
![]() |
[37] |
J. Pauly, Non-Cartesian reconstruction, 2005.
![]() |
[38] |
X. Peng, H.-Q. Du, F. Lam, S. D. Babacan and Z.-P. Liang, Reference-driven MR image reconstruction with sparsity and support constraints, in 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, IEEE, 2011, 89-92.
doi: 10.1109/ISBI.2011.5872361.![]() ![]() |
[39] |
S. K. Plevritis and A. Macovski, Spectral extrapolation of spatially bounded images, IEEE Transactions on Medical Imaging, 14 (1995), 487-497.
doi: 10.1109/42.414614.![]() ![]() |
[40] |
K. P. Pruessmann, M. Weiger, M. B. Scheidegger and P. Boesiger, Sensitivity encoding for fast MRI, Magnetic Resonance in Medicine, 42 (1999), 952-962.
doi: 10.1002/(SICI)1522-2594(199911)42:5.![]() ![]() |
[41] |
V. Rasche, R. Proksa, R. Sinkus, P. Bornert and H. Eggers, Resampling of data between arbitrary grids using convolution interpolation, IEEE Transactions on Medical Imaging, 18 (1999), 385-392.
doi: 10.1109/42.774166.![]() ![]() |
[42] |
P. B. Roemer, W. A. Edelstein, C. E. Hayes, S. P. Souza and O. M. Mueller, The NMR phased array, Magnetic Resonance in Medicine, 16 (1990), 192-225.
doi: 10.1002/mrm.1910160203.![]() ![]() |
[43] |
A. A. Samsonov, E. G. Kholmovski, D. L. Parker and C. R. Johnson, POCSENSE: POCS-based reconstruction for sensitivity encoded magnetic resonance imaging, Magnetic Resonance in Medicine, 52 (2004), 1397-1406.
doi: 10.1002/mrm.20285.![]() ![]() |
[44] |
M. Sarracanie, C. D. LaPierre, N. Salameh, D. E. Waddington, T. Witzel and M. S. Rosen, Low-cost high-performance MRI, Scientific Reports, 5 (2015), 15177.
doi: 10.1038/srep15177.![]() ![]() |
[45] |
K. Scheffler and J. Hennig, Reduced circular field-of-view imaging, Magnetic Resonance in Medicine, 40 (1998), 474-480.
doi: 10.1002/mrm.1910400319.![]() ![]() |
[46] |
T. J. Sumpf, M. Uecker, S. Boretius and J. Frahm, Model-based nonlinear inverse reconstruction for T2 mapping using highly undersampled spin-echo MRI, Journal of Magnetic Resonance Imaging, 34 (2011), 420-428.
doi: 10.1002/jmri.22634.![]() ![]() |
[47] |
L. N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, 1997.
doi: 10.1137/1.9780898719574.![]() ![]() ![]() |
[48] |
Y. Wang and W. Yin, Sparse signal reconstruction via iterative support detection, SIAM Journal on Imaging Sciences, 3 (2010), 462-491.
doi: 10.1137/090772447.![]() ![]() ![]() |
[49] |
Z. Yaqoob, J. Wu and C. Yang, Spectral domain optical coherence tomography: A better OCT imaging strategy, Biotechniques, 39 (2005), S6-S13.
doi: 10.2144/000112090.![]() ![]() |
An axial slice of a brain: a) the yellow rectangle and the cyan contour represent a rectangular and non-rectangular FOV, respectively, and b) a depiction of the reduced area in the non-rectangular FOV
A depiction of a non-rectangular FOV and its sampling pattern. The dark blue contour in (a) shows the boundary of the non-rectangular FOV, and (b) shows the full sampling pattern associated with a rectangular FOV
A depiction of how a non-rectangular FOV is separated into components: a) shows an aliased version non-rectangular FOV of Fig. 2a where the dashed lines separate the outer region of (b) and the inner region of (c)
Sampling patterns related to the FOV: a) the full sampling pattern based on the rectangular FOV, b) the full sampling pattern for the inner region, and c) the proposed sampling pattern for the non-rectangular FOV
The shape of the largest connected object that can be reconstructed accurately with the method described. Note that the two lengths labeled
Subfigure (a) shows a sagittal slice of an ankle and foot; (b) shows a corresponding non-rectangular FOV that does not include the upper-right quadrant, and (c) shows the corresponding sampling pattern for the non-rectangular FOV of (b). The sampling burden of the reduced sampling pattern is
Magnitude image reconstructions of a sagittal slice of an ankle and foot: a) shows the fully-sampled reconstruction, b) shows the zero-filled reconstruction with the non-rectangular FOV sampling pattern of Fig. 6b with a sampling burden of
Image reconstructions for six coils of a dedicated ankle array - a) Magnitude images for each coil, and b) the non-rectangular FOV determined using the intensity images of (a)
Magnitude image reconstruction of the ankle using the direct reconstruction methods and the sampling pattern determined according to the individual coil FOVs shown in Fig. 8b with a sampling burden of
Magnitude image reconstructions of an axial slice of a pineapple from data collected with a single coil: left) the fully sampled reconstruction, center) the direct reconstruction from the undersampled pattern with a burden of
Model-based magnitude image reconstructions of an axial slice of a pineapple with sampling burdens of (from left to right)
Magnitude image reconstructions using the direct method for four axial slices of a brain using data collected with an 8 coil array. The sampling pattern of the non-rectangular FOV had a burden of 95%