\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Learned enclosure method for experimental EIT data

  • *Corresponding author: Sara Sippola

    *Corresponding author: Sara Sippola 
Abstract / Introduction Full Text(HTML) Figure(12) Related Papers Cited by
  • Electrical impedance tomography (EIT) is a non-invasive imaging method with diverse applications, including medical imaging and non-destructive testing. The inverse problem of reconstructing internal electrical conductivity from boundary measurements is nonlinear and highly ill-posed, making it difficult to solve accurately. In recent years, there has been growing interest in combining analytical methods with machine learning to solve inverse problems. In this paper, we propose a method for estimating the convex hull of inclusions from boundary measurements by combining the enclosure method proposed by Ikehata with neural networks. We demonstrate its performance using experimental data. Compared to the classical enclosure method with least squares fitting, the learned hull achieves superior performance on both simulated and experimental data.

    Mathematics Subject Classification: Primary: 65N21; Secondary: 92C55.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The image on the right shows an experimental phantom with plastic shapes placed in saline (salt water). On the left is a simulated phantom resembling the experimental setting. The image shows the line determined by the support function $ {{h_D(\omega)}: = \sup_{x\in D}x\cdot\omega} $ in the direction $ \omega\in S^1 $ for the inclusions $ D\subset\Omega $, where $ \Omega $ is the unit disk

    Figure 2.  An example of the slope of the least squares fit approximating the true support function of the phantom on the right in the direction $ \omega_4 $. The values of $ \frac{1}{2} \text{log} | I_{\omega_4} (\tau_j)| $, $ j = 1,\dots,10 $, are shown on the left as dots. The LS fit is plotted as a dotted and $ h_D(\omega_4)\tau+b $ as a solid line. The true support function $ h_D(\omega_4) $ corresponds to the distance of the probing half-plane from the origin, shown on the right in dark gray. The slope of the least squares fit approximates this distance but overestimates it, as can be seen from the light gray half-plane. To get the full convex hull of inclusions, this process is repeated for all directions $ \omega_i $

    Figure 3.  An example of the indicator function matrix (B, top) and the input (B, bottom) given to the neural network for one conductivity phantom (A) from the training data set. The output (C) is a vector, plotted here as a line over $ \omega $, where each element corresponds to the true support function in the direction $ \omega_i $

    Figure 4.  Neural network architecture, with two convolutional layers and a fully connected output layer

    Figure 5.  We measure the quality of reconstructions of convex hulls using formula (22). This picture illustrates how the error can be seen as a sum of false negatives and false positives

    Figure 6.  Histograms showing the distribution of the relative errors of the learned hulls (blue) and least squares hulls (red) in the simulated testing data set. The horizontal axis represents the relative error (22) and the vertical axis represents the frequency. Most of the learned hulls have a relative error that falls under 10%, whereas the relative errors of the least squares hulls range from 7% to 78%. False positives account for most of the errors, meaning that both approaches tend to overestimate the hull

    Figure 7.  Comparison of the support vectors and the hulls of the simulated phantoms, computed using LS (dotted line), learned approach (dashed line), and the ground truth (solid line). The error relative to the ground truth is shown below each phantom

    Figure 8.  Comparison of the ground truth, learned and least squares hulls of the experimental phantoms. The error relative to the ground truth is shown below each phantom

    Figure 9.  Comparison of the ground truth, learned and least squares hulls of the experimental phantoms. The error relative to the ground truth is shown below each phantom

    Figure 10.  Comparison of the ground truth, learned and least squares hulls of the experimental phantoms. The error relative to the ground truth is shown below each phantom

    Figure 11.  Comparison of the ground truth, learned and least squares hulls of the experimental phantoms. The error relative to the ground truth is shown below each phantom

    Figure 12.  The image on the left shows an example of the segmentation and the image on the right shows the resulting convex hull that is used as ground truth

  • [1] G. Alessandrini, Stable determination of conductivity by boundary measurements, Applicable Analysis, 27 (1988), 153-172.  doi: 10.1080/00036818808839730.
    [2] M. Alsaker, S. Rautio, F. Moura, J. P. Agnelli, R. Murthy, M. Lassas, J. L. Mueller and S. Siltanen, Ct scans without x-rays: Parallel-beam imaging from nonlinear current flows, arXiv preprint, arXiv: 2408.12992, 2024.
    [3] M. Brühl, Explicit characterization of inclusions in electrical impedance tomography, SIAM Journal on Mathematical Analysis, 32 (2001), 1327-1341.  doi: 10.1137/S003614100036656X.
    [4] M. Brühl and M. Hanke, Numerical implementation of two noniterative methods forlocating inclusions by impedance tomography, Inverse Problems, 16 (2000), 1029-1042.  doi: 10.1088/0266-5611/16/4/310.
    [5] A.-P. Calderón, On an inverse boundary value problem, In Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), Soc. Brasil. Mat., Rio de Janeiro, 1980, 65-73.
    [6] M. CheneyD. Isaacson and J. C. Newell, Electrical impedance tomography, SIAM Review, 41 (1999), 85-101.  doi: 10.1137/S0036144598333613.
    [7] H. Garde and N. Hyvönen, Mimicking relative continuum measurements by electrode data in two-dimensional electrical impedance tomography, Numerische Mathematik, 147 (2021), 579–609. doi: 10.1007/s00211-020-01170-8.
    [8] R. Guo and J. Jiang, Construct deep neural networks based on direct sampling methods for solving electrical impedance tomography, SIAM Journal on Scientific Computing, 43 (2021), B678-B711. doi: 10.1137/20M1367350.
    [9] M. HallajiA. Seppänen and M. Pour-Ghaz, Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete, Smart Materials and Structures, 23 (2014), 085001.  doi: 10.1088/0964-1726/23/8/085001.
    [10] S. J. Hamilton and A. Hauptmann, Deep d-bar: Real-time electrical impedance tomography imaging with deep neural networks, IEEE Transactions on Medical Imaging, 37 (2018), 2367-2377.  doi: 10.1109/TMI.2018.2828303.
    [11] A. Hauptmann, M. Ikehata, H. Itou and S. Siltanen, Revealing cracks inside conductive bodies by electric surface measurements, Inverse Problems, 35 (2019), 025004, 24 pp. doi: 10.1088/1361-6420/aaf273.
    [12] A. Hauptmann, V. Kolehmainen, N. M. Mach, T. Savolainen, A. Seppänen and S. Siltanen, Open 2d electrical impedance tomography data archive, arXiv preprint, arXiv: 1704.01178, 2017.
    [13] T. Ide, H. Isozaki, S. Nakata and S. Siltanen, Local detection of three-dimensional inclusions in electrical impedance tomography, Inverse Problems, 26 (2010), 035001, 17 pp. doi: 10.1088/0266-5611/26/3/035001.
    [14] T. IdeH. IsozakiS. NakataS. Siltanen and G. Uhlmann, Probing for electrical inclusions with complex spherical waves, Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 60 (2007), 1415-1442.  doi: 10.1002/cpa.20194.
    [15] M. Ikehata, How to draw a picture of an unknown inclusion from boundary measurements. Two mathematical inversion algorithms, Journal of Inverse and Ill-Posed Problems, 7 (1999), 255-271.  doi: 10.1515/jiip.1999.7.3.255.
    [16] M. Ikehata, Reconstruction of the support function for inclusion from boundary measurements, Journal of Inverse and Ill-Posed Problems, 8 (2000), 367-378.  doi: 10.1515/jiip.2000.8.4.367.
    [17] M. Ikehata and S. Siltanen, Numerical method for finding the convex hull of an inclusion in conductivity from boundary measurements, Inverse Problems, 16 (2000), 1043-1052.  doi: 10.1088/0266-5611/16/4/311.
    [18] M. Ikehata and S. Siltanen, Electrical impedance tomography and mittag-leffler's function, Inverse Problems, 20 (2004), 1325-1348.  doi: 10.1088/0266-5611/20/4/019.
    [19] D. Isaacson, Distinguishability of conductivities by electric current computed tomography, IEEE Transactions on Medical Imaging, 5 (2007), 91-95.  doi: 10.1109/TMI.1986.4307752.
    [20] D. IsaacsonJ. L. MuellerJ. C. Newell and S. Siltanen, Reconstructions of chest phantoms by the d-bar method for electrical impedance tomography, IEEE Transactions on Medical Imaging, 23 (2004), 821-828.  doi: 10.1109/TMI.2004.827482.
    [21] J. KourunenT. SavolainenA. LehikoinenM. Vauhkonen and L. M. Heikkinen, Suitability of a pxi platform for an electrical impedance tomography system, Measurement Science and Technology, 20 (2008), 015503.  doi: 10.1088/0957-0233/20/1/015503.
    [22] J. L. Mueller and S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications, SIAM, 2012. doi: 10.1137/1.9781611972344.
    [23] A. A. PathirajaR. A. WeerakkodyA. C. von RoonP. Ziprin and R. Bayford, The clinical application of electrical impedance technology in the detection of malignant neoplasms: A systematic review, Journal of Translational Medicine, 18 (2020), 1-11.  doi: 10.1186/s12967-020-02395-9.
    [24] A. SeppänenM. VauhkonenP. J. VauhkonenE. Somersalo and J. P. Kaipio, State estimation with fluid dynamical evolution models in process tomography-anapplication to impedance tomography, Inverse Problems, 17 (2001), 467-483.  doi: 10.1088/0266-5611/17/3/307.
    [25] S. Siltanen and T. Ide, Electrical impedance tomography, enclosure method and machine learning, In 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP), IEEE, 2020, 1-6. doi: 10.1109/MLSP49062.2020.9231717.
    [26] D. SmylM. Pour-Ghaz and A. Seppänen, Detection and reconstruction of complex structural cracking patterns with electrical imaging, NDT & E International, 99 (2018), 123-133. 
    [27] E. SomersaloM. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM Journal on Applied Mathematics, 52 (1992), 1023-1040.  doi: 10.1137/0152060.
    [28] T. N. Tallman and D. J. Smyl, Structural health and condition monitoring via electrical impedance tomography in self-sensing materials: A review, Smart Materials and Structures, 29 (2020), 123001.  doi: 10.1088/1361-665X/abb352.
    [29] D. N. Tanyu, J. Ning, A. Hauptmann, B. Jin and P. Maass, Electrical impedance tomography: A fair comparative study on deep learning and analytic-based approaches, arXiv preprint, arXiv: 2310.18636, 2023.
    [30] Z. WeiD. Liu and X. Chen, Dominant-current deep learning scheme for electrical impedance tomography, IEEE Transactions on Biomedical Engineering, 66 (2019), 2546-2555.  doi: 10.1109/TBME.2019.2891676.
    [31] J. E. Zablah, C. Vargas-Acevedo, N. da BarbosaRosa Jr, O. R. Shishvan, G. Saulnier, D. Isaacson, G. J. Morgan and J. L. Mueller, Feasibility of electric impedance tomography in the assessment of lung perfusion and ventilation in congenital pulmonary vein stenosis, Pediatric Cardiology, (2025), 1-8. doi: 10.1007/s00246-025-03816-6.
  • 加载中

Figures(12)

SHARE

Article Metrics

HTML views(115) PDF downloads(28) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return