January  2016, 1(1): 1-13. doi: 10.3934/bdia.2016.1.1

ACO-based solution for computation offloading in mobile cloud computing

1. 

College of Information System and Management, National University of Defense Technology, Changsha 410073, Hunan, China

2. 

College of Information System and Management, National University of Defense Technology, Changsha, Hunan, 410073, China, China, China, China, China

Received  July 2015 Revised  August 2015 Published  September 2015

The cloud computing has attracted growing attentions for its benefits to providing on-demand services, mobile cloud computing (MCC) enables an increasing number of applications and computational services available on mobile devices. In MCC, computation offloading is one of the most important challenges to provide remote execution of applications to the mobile devices. Here we mainly introduce the ant colony optimization (ACO) to address this challeng and propose an ACO-based solution to the computation offloading problem. The proposed method can be well implemented in practice and presents with low computing complexity.
Citation: Weidong Bao, Haoran Ji, Xiaomin Zhu, Ji Wang, Wenhua Xiao, Jianhong Wu. ACO-based solution for computation offloading in mobile cloud computing. Big Data & Information Analytics, 2016, 1 (1) : 1-13. doi: 10.3934/bdia.2016.1.1
References:
[1]

Hoang T. Dinh, Chonho Lee, Dusit Niyato and Ping Wang, A survey of mobile cloud computing: Architecture, applications, and approaches, wireless communications and mobile computing,, Wireless Communications and Mobile Computing, 13 (2013).   Google Scholar

[2]

White Paper, Mobile Cloud Computing Solution Brief,, AEPONA, (2010).   Google Scholar

[3]

R. Holman, Mobile Cloud Computing: \$9.5 Billion by 2014,, http://www.juniperresearch.com/analyst-xpress-blog/2010/01/26/mobile-cloud-applicationrevenues-to-hit-95-billion-by-2014-driven-by-converged-mobile-services/, (2010).   Google Scholar

[4]

S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani and R. Buyya, Cloud-based augmentation for mobile devices: Motivation, taxonomies, and open issues,, IEEE Communications Surveys and Tutorials 2014, 16 (2014), 337.   Google Scholar

[5]

R. K. Balan, Simplifying Cyber Foraging,, Ph.D thesis, (2006).   Google Scholar

[6]

L. F. Bittencourt, E. R. M. Madeira and N. L. S. D. Fonseca, Scheduling in hybrid clouds,, IEEE Communications Magazine, 50 (2012), 42.   Google Scholar

[7]

L. F. Bittencourt, HCOC: A cost optimization algorithm for workflow scheduling in hybrid clouds,, Journal of Internet Services & Applications , 2 (2011), 207.   Google Scholar

[8]

A. Colorni, M. Dorigo and V. Maniezzo, Distributed optimization by ant colonies,, actes dela premiare conference europeenne sur la vie artificielle, (1991), 134.   Google Scholar

[9]

M. Dorigo, Optimization, Learning and Natural Algorithms,, Ph.D thesis, (1992).   Google Scholar

[10]

N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown and R. Johari, Plug-n-Serve: Load-balancing Web Traffic Using OpenFlow, ACM SIGCOMM Demo,, 2009., ().   Google Scholar

[11]

M. Koerner and O. Kao, Multiple service load-balancing with Open-Flow,, in 2012 IEEE 13th International Conference on High Performance Switching and Routing (HPSR), (2012), 211.   Google Scholar

[12]

K. Kumar, J. Liu and Y. H. Lu, A survey of computation offloading for mobile systems,, Mobile Networks and Applications, 18 (2013), 129.   Google Scholar

[13]

J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh and A. H. Byers, Big data: The next frontier for innovation, competition, and productivity,, Online Report, (2011).   Google Scholar

[14]

M. Shiraz, E. Ahmed, A. Gani and Q. Han, Investigation on runtime partitioning of elastic mobile applications for mobile cloud computing,, Journal of Supercomputing, 67 (2014), 84.   Google Scholar

[15]

M. Shiraz, A. Gani, R. H. Khokhar and R. Buyya, A review on distributed application processing frameworks in smart mobile devices for mobile cloud computing,, IEEE Communications Survers & Tutorials, 15 (2011), 1294.  doi: 10.1109/SURV.2012.111412.00045.  Google Scholar

[16]

M. Shiraz, M. Sookhak, A. Gani and S. A. Ali Shah, A study on the critical analysis of computational offloading frameworks for mobile cloud computing,, Journal of Network and Computer Applications, 47 (2015), 47.  doi: 10.1016/j.jnca.2014.08.011.  Google Scholar

[17]

V. Viswanathan and I. Krishnamurthi, Finding relevant semantic association paths using semantic ant colony optimization algorithm,, Soft Computing, (2014).   Google Scholar

[18]

R. Wang, D. Butnariu and J. Rexford, OpenFlow-based server load balancing gone wild,, in Proceedings of the 11th USENIX conference on Hot topics in management of internet, (2011).   Google Scholar

[19]

X. Zhu, C. Chen, L. T. Yang and Y. Xiang, ANGEL: Agent-based scheduling for real-time tasks in virtualized clouds,, IEEE Transactions on Computers, pp (2015).  doi: 10.1109/TC.2015.2409864.  Google Scholar

[20]

X. Zhu, R. Ge, J. Sun and C. He, 3E: Energy-efficient elastic scheduling for independent tasks in heterogeneous computing system,, Journal of Systems and Software, 86 (2013), 302.  doi: 10.1016/j.jss.2012.08.017.  Google Scholar

show all references

References:
[1]

Hoang T. Dinh, Chonho Lee, Dusit Niyato and Ping Wang, A survey of mobile cloud computing: Architecture, applications, and approaches, wireless communications and mobile computing,, Wireless Communications and Mobile Computing, 13 (2013).   Google Scholar

[2]

White Paper, Mobile Cloud Computing Solution Brief,, AEPONA, (2010).   Google Scholar

[3]

R. Holman, Mobile Cloud Computing: \$9.5 Billion by 2014,, http://www.juniperresearch.com/analyst-xpress-blog/2010/01/26/mobile-cloud-applicationrevenues-to-hit-95-billion-by-2014-driven-by-converged-mobile-services/, (2010).   Google Scholar

[4]

S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani and R. Buyya, Cloud-based augmentation for mobile devices: Motivation, taxonomies, and open issues,, IEEE Communications Surveys and Tutorials 2014, 16 (2014), 337.   Google Scholar

[5]

R. K. Balan, Simplifying Cyber Foraging,, Ph.D thesis, (2006).   Google Scholar

[6]

L. F. Bittencourt, E. R. M. Madeira and N. L. S. D. Fonseca, Scheduling in hybrid clouds,, IEEE Communications Magazine, 50 (2012), 42.   Google Scholar

[7]

L. F. Bittencourt, HCOC: A cost optimization algorithm for workflow scheduling in hybrid clouds,, Journal of Internet Services & Applications , 2 (2011), 207.   Google Scholar

[8]

A. Colorni, M. Dorigo and V. Maniezzo, Distributed optimization by ant colonies,, actes dela premiare conference europeenne sur la vie artificielle, (1991), 134.   Google Scholar

[9]

M. Dorigo, Optimization, Learning and Natural Algorithms,, Ph.D thesis, (1992).   Google Scholar

[10]

N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown and R. Johari, Plug-n-Serve: Load-balancing Web Traffic Using OpenFlow, ACM SIGCOMM Demo,, 2009., ().   Google Scholar

[11]

M. Koerner and O. Kao, Multiple service load-balancing with Open-Flow,, in 2012 IEEE 13th International Conference on High Performance Switching and Routing (HPSR), (2012), 211.   Google Scholar

[12]

K. Kumar, J. Liu and Y. H. Lu, A survey of computation offloading for mobile systems,, Mobile Networks and Applications, 18 (2013), 129.   Google Scholar

[13]

J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh and A. H. Byers, Big data: The next frontier for innovation, competition, and productivity,, Online Report, (2011).   Google Scholar

[14]

M. Shiraz, E. Ahmed, A. Gani and Q. Han, Investigation on runtime partitioning of elastic mobile applications for mobile cloud computing,, Journal of Supercomputing, 67 (2014), 84.   Google Scholar

[15]

M. Shiraz, A. Gani, R. H. Khokhar and R. Buyya, A review on distributed application processing frameworks in smart mobile devices for mobile cloud computing,, IEEE Communications Survers & Tutorials, 15 (2011), 1294.  doi: 10.1109/SURV.2012.111412.00045.  Google Scholar

[16]

M. Shiraz, M. Sookhak, A. Gani and S. A. Ali Shah, A study on the critical analysis of computational offloading frameworks for mobile cloud computing,, Journal of Network and Computer Applications, 47 (2015), 47.  doi: 10.1016/j.jnca.2014.08.011.  Google Scholar

[17]

V. Viswanathan and I. Krishnamurthi, Finding relevant semantic association paths using semantic ant colony optimization algorithm,, Soft Computing, (2014).   Google Scholar

[18]

R. Wang, D. Butnariu and J. Rexford, OpenFlow-based server load balancing gone wild,, in Proceedings of the 11th USENIX conference on Hot topics in management of internet, (2011).   Google Scholar

[19]

X. Zhu, C. Chen, L. T. Yang and Y. Xiang, ANGEL: Agent-based scheduling for real-time tasks in virtualized clouds,, IEEE Transactions on Computers, pp (2015).  doi: 10.1109/TC.2015.2409864.  Google Scholar

[20]

X. Zhu, R. Ge, J. Sun and C. He, 3E: Energy-efficient elastic scheduling for independent tasks in heterogeneous computing system,, Journal of Systems and Software, 86 (2013), 302.  doi: 10.1016/j.jss.2012.08.017.  Google Scholar

[1]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[2]

Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021013

[3]

Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009

[4]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[5]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[6]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[7]

Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351

[8]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[9]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[10]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[11]

Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130

[12]

Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021025

[13]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[14]

Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020291

[15]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[16]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[17]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[18]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[19]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[20]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

 Impact Factor: 

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (1)

[Back to Top]